Research on the Effect of Geometric Parameters of a Six-Way Junction Microchannel on the Formation of a Double Emulsion Droplet

Document Type : Regular Article


School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China



As a typical microdroplet, double emulsion droplet, has received much attention and been widely used in recent years. For a simplified double-cross-shaped microchannel, the process of preparing double emulsion droplets is numerically simulated in this paper. The mechanism of droplet forming was analyzed, and the effects of the angles of the inner-, middle-, and outer-phase channels of the microchip, length of the focusing hole, and expansion angle on the process and quality of the double emulsion droplet formation were investigated. The variation in angles between each inlet channel affects the droplet area; the change in expansion angle affects the flow pattern of droplets; the change in each geometric parameter affects the monodispersity of droplets. The droplet area is fitted to the microchannel geometric parameters and the functional expressions that represent their relationship are derived. The work in this paper provides a reference for the practical production and research of double emulsion droplets.


Deshpande, S. and C. Dekker (2018). On-chip microfluidic production of cell-sized liposomes. Nature Protocols 13(5), 856-874.##
Deshpande, S., Y. Caspi, A. E. Meijering and Dekker, C. (2016). Octanol-assisted liposome assembly on chip. Nature Communications 7(1), 1-9.##
Fani, M., P. Pourafshary, P. Mostaghimi and N. Mosavat (2022). Application of microfluidics in chemical enhanced oil recovery: A review. Fuel 315, 123225.##
Gueyffier, D., J. Li, A. Nadim, R. Scardovelli and S. Zaleski (1999). Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics 152(2), 423-456.##
Han, W. and X. Chen (2021). A review on microdroplet generation in microfluidics. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43(5), 1-12.##
He, S., N. Joseph, S. Feng, M. Jellicoe and C. L. Raston (2020). Application of microfluidic technology in food processing. Food and Function 11(7), 5726-5737.##
Hidema, R., R. Ohashi, S. J. Muller and H. Suzuki (2021). Effects of channel geometry and physicochemical properties of solutions on stable double emulsion production in planar microfluidic devices having triangular orifices. AIP Advances 11(6), 065219.##
Illath, K., S. Kar, P. Gupta, A. Shinde, S. Wankhar, F. G. Tseng and T. S. Santra (2021). Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 121247.##
Jiang, F., Y. Xu, J. Song and H. Lu (2019). Numerical study on the effect of temperature on droplet formation inside the microfluidic chip. Journal of Applied Fluid Mechanics 12(3), 831-843.##
Kanouni, M., H. L. Rosano and N. Naouli (2002). Preparation of a stable double emulsion (W1/O/W2): role of the interfacial films on the stability of the system. Advances in Colloid and Interface Science 99(3), 229-254.##
Ko, D. H., A. Hosseini, H. Karaosmanoglu, K. Taredun, L. Jones and A. Partridge (2022). Microfluidic separation of capture from detection and its application for determination of COVID-19 antibodies. Sensors and Actuators B: Chemical 351, 130918.##
Lian, J., X. Luo, X. Huang, Y. Wang, Z. Xu and X. Ruan (2019). Investigation of microfluidic co-flow effects on step emulsification: Interfacial tension and flow velocities. Colloids and Surfaces A: Physicochemical and Engineering Aspects 568, 381-390.##
Liu, Z., M. Chai, X. Chen, S. H. Hejazi and Y. Li (2021). Emulsification in a microfluidic flow-focusing device: Effect of the dispersed phase viscosity. Fuel 283, 119229.##
Liu, Z., J. Zhao, Y. Pang and X. Wang (2018). Generation of droplets in the T-junction with a constriction microchannel. Microfluidics and Nanofluidics 22(11), 1-9.##
Muhsin, S. A., M. Al-Amidie, Z. Shen, Z. Mlaji, J. Liu, A. Abdullah and M. Almasri (2022). A microfluidic biosensor for rapid simultaneous detection of waterborne pathogens. Biosensors and Bioelectronics 113993.##
Nabavi, S. A., G. T. Vladisavljević, S. Gu and E. E. Ekanem (2015). Double emulsion production in glass capillary microfluidic device: Parametric investigation of droplet generation behaviour. Chemical Engineering Science 130, 183-196.##
Sapei, L., M. A. Naqvi and D. Rousseau (2012). Stability and release properties of double emulsions for food applications. Food hydrocolloids 27(2), 316-323.##
Sartipzadeh, O., S. M. Naghib, A. Seyfoori, M. Rahmanian and F. S. Fateminia (2020). Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size. Materials Science and Engineering: C 109, 110606.##
Schaich, M., D. Sobota, H. Sleath, J. Cama and U. F. Keyser (2020). Characterization of lipid composition and diffusivity in OLA generated vesicles. Biochimica et Biophysica Acta (BBA)-Biomembranes 1862(9), 183359.##
Schmidt-Speicher, L. M., and K. Länge (2021). Microfluidic integration for electrochemical biosensor applications. Current Opinion in Electrochemistry 29, 100755.##
Shao, C., J. Chi, L. Shang, Q. Fan and F. Ye (2021). Droplet microfluidics-based biomedical microcarriers. Acta Biomaterialia.##
Shi, Y., Y. Cai, Y. Cao, Z. Hong and Y. Chai (2021). Recent advances in microfluidic technology and applications for anti-cancer drug screening. TrAC Trends in Analytical Chemistry 134, 116118.##
Souza, L. and A. Al-Tabbaa (2018). Microfluidic fabrication of microcapsules tailored for self-healing in cementitious materials. Construction and Building Materials 184, 713-722.##
Stauffer, F., B. Peter, H. Alem, D. Funfschilling, N. Dumas, C. A. Serra and T. Roques-Carmes (2019). Polyelectrolytes layer-by-layer surface modification of PDMS microchips for the production of simple O/W and double W/O/W emulsions: From global to localized treatment. Chemical Engineering and Processing-Process Intensification 146, 107685.##
Su, W., D. Liang and M. Tan (2021). Microfluidic strategies for sample separation and rapid detection of food allergens. Trends in Food Science and Technology 110, 213-225.##
Tan, S., C. Gao, H. Liu, B. Ye and D. Sun (2020). Research of double emulsion formation and shell-thickness influence factors in a novel six-way junction microfluidic device. Colloids and Surfaces A: Physicochemical and Engineering Aspects 601, 124917.##
Tivony, R., M. Fletcher, K. Al Nahas and U. F. Keyser (2021). A microfluidic platform for sequential assembly and separation of synthetic cell models. ACS Synthetic Biology 10(11), 3105-3116.##
Utada, A. S., A. Fernandez-Nieves, H. A. Stone and D. A. Weitz (2007). Dripping to jetting transitions in coflowing liquid streams. Physical Review Letters 99(9), 094502.##
Vaezi, Z., M. Sedghi, M. Ghorbani, S. Shojaeilangari, A. Allahverdi and H. Naderi-Manesh (2020). Investigation of the programmed cell death by encapsulated cytoskeleton drug liposomes using a microfluidic platform. Microfluidics and Nanofluidics 24(7), 1-15.##
Wu, P., Z. Luo, Z. Liu, Z. Li, C. Chen, L. Feng and L. He (2015). Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics. Chinese Journal of Chemical Engineering 23(1), 7-14.##
Xing, G., W. Zhang, N. Li, Q. Pu and J. M. Lin (2021). Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. Chinese Chemical Letters.##
Zhang, C., W. Gao, Y. Zhao and Y. Chen (2018). Microfluidic generation of self-contained multicomponent microcapsules for self-healing materials. Applied Physics Letters 113(20), 203702.##
Zhao-Miao, L. I. U., D. U. Yu and P. A. N. G. Yan (2018). Generation of water-in-oil-in-water (W/O/W) double emulsions by microfluidics. Chinese Journal of Analytical Chemistry 46(3), 324-330.##