Performance Optimization of Nozzle-Diffuser Piezoelectric Micropump with Multiple Vibrating Membranes by Design of Experiment (DOE) Method

Document Type : Regular Article

Authors

1 Faculty of Mechanical and Energy Engineering, Shahid Beheshti University (SBU), Tehran, 1983969411, Iran

2 Current Affiliation: School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran

10.47176/jafm.16.07.1539

Abstract

During recent years, microfluidics based microelectromechanical systems (MEMSs) have found multiple applications in biomedical engineering. One of their most important implementations is fluid transfer in microliter and nanoliter scales. Nowadays, micropumps are extensively used in various medical applications such as drug delivery. In this study, the performance of a piezoelectric micropump is investigated and optimized. This micropump consists of a pump chamber and three deformable walls in a nozzle-diffuser shape, which are used to create pressure gradient between the inlet and outlet. The performance of the micropump is evaluated by transient Computational Fluid Dynamics (CFD) simulation using dynamic mesh. Then its performance is optimized using the Design of Experiment (DOE) method based on mean net outlet mass flow rate and flow reversibility at the pump outlet. The results indicate an improvement of 34.5% in mean net outlet mass flow rate and a significant decrease in reversibility. The maximum mean net outlet mass flow rate and the minimum reversibility corresponding to the optimum geometries are 95.82 mL/min and 0.05%, respectively.

Keywords

Main Subjects


Abhari, F., H. Jaafar and N. A. Md Yunus (2012). A comprehensive study of micropumps technologies. International Journal of Electrochemical Science 7 (10), 9765-9780.##
Byrne, D. M. and S. Taguchi (1987). The Taguchi approach to parameter design. Quality Progress 20 (12),19-26.##
Cartin, C. P., R. M. Pidaparti and G. M. Atkinson (2008). Design and fabrication of a PDMS micropump with moving membranes. In 2008 17th Biennial University/Government/ Industry Micro/Nano Symposium, IEEE.##
Cui, Q., C. Liu and X. F. Zha (2008). Simulation and optimization of a piezoelectric micropump for medical applications. The International Journal of Advanced Manufacturing Technology 36(5–6), 516-524.##
Currie, I. G. (2016). Fundamental Mechanics of Fluids. CRC Press.##
He, X., S. C. Cai, Z. D. Deng and S. Yang (2017). Experimental and numerical study of flow characteristics of flat-walled diffuser/nozzles for valveless piezoelectric micropumps. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231 (12), 2313-2326.##
Issa, R. I. (1986). Solution of the implicitly discretised fluid flow equations by operatorsplitting. Journal of Computational Physics 62, 40-65.##
Iverson, B. D. and S. V. Garimella (2008). Recent advances in microscale pumping technologies: a review and evaluation. Microfluidics and Nanofluidics 5(2), 145-174.##
Kackar, R. N. (1985). Off-line quality control, parameter design, and the Taguchi method. Journal of Quality Technology 17(4),176-188.##
Karimi, S., P. Mehrdel, J. Farré-Lladós and J. Casals-Terré (2019). A passive portable microfluidic blood–plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing. Lab on a Chip 19, 3249-3260.##
Karimi, S., M. Mojaddam, S. Majidi, P. Mehrdel, J. Farré-Lladós and J. Casals-Terré (2021). Numerical and experimental analysis of a high-throughput blood plasma separator for point-of-care applications. Analytical and Bioanalytical Chemistry 413, 2867-2878.##
Khuri, A. I. and S. Mukhopadhyay (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics 2(2), 128-149.##
Kim, Y. S., J. H. Kim, K. H. Na and K. Rhee (2005). Experimental and numerical studies on the performance of a polydimethylsiloxane valveless micropump. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 219(10), 1139-1145.##
Koombua, K., R. M. Pidaparti and G. M. Atkinson (2008). Microfluidic simulations of micropump with multiple vibrating membranes. In Proceedings of the 11th International Conference on Modeling and Simulation of Microsystems, Boston, MA.##
Koombua, K. and R. M. Pidaparti (2010). Performance evaluation of a micropump with multiple pneumatic actuators via coupled simulations. Engineering Applications of Computational Fluid Mechanics 4(3),357-364.##
Kumar, C. S. S. R. (2010). Microfluidic devices in nanotechnology: applications. John Wiley & Sons.##
Lee Rodgers, J. and W. A. Nicewander (1988). Thirteen ways to look at the correlation coefficient. The American Statistician 42(1), 59-66.##
Li, Z. and X. Zheng (2017). Review of design optimization methods for turbomachinery aerodynamics. Progress in Aerospace Sciences 93, 1-23.##
Mason, R. L., R. F. Gunst and J. L. Hess (2003). Statistical Design and Analysis of Experiments: With Applications to Engineering and Science. John Wiley & Sons.##
Mojaddam, M. and K. R. Pullen (2019). Optimization of a centrifugal compressor using the design of experiment technique. Applied Sciences 9(2), 291.##
Montgomery, D. C. and G. C. Runger (2010). Applied Statistics and Probability for Engineers. John Wiley & Sons.##
Montgomery, D. C. (2017). Design and Analysis of Experiments. John wiley & sons.##
Myers, R. H., D. C. Montgomery, G. G. Vining, C. M. Borror and S. M. Kowalski (2004). Response surface methodology: a retrospective and literature survey. Journal of Quality Technology 36(1), 53-77.##
Namazizadeh, M., M. Talebian Gevari, M. Mojaddam and M. Vajdi (2020). Optimization of the splitter blade configuration and geometry of a centrifugal pump impeller using design of experiment. Journal of Applied Fluid Mechanics 13(1), 89-101.##
Noruz Shamsian, O., A. Mohseni and M. Mojaddam (2020). Design of a microseparator for circulating tumor cells (CTCs) from blood flow using hybrid pinched flow fractionation (PFF) and dielectrophoresis methods. Journal of Solid and Fluid Mechanics 10(1), 281-296. (in Persian).##
Ohnstein, T., T. Fukiura, J. Ridley and U. Bonne (1990). Micromachined silicon microvalve. In IEEE Proceedings on Micro Electro Mechanical Systems, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.##
Patankar, S. V. and D. B. A. Spalding (1972). Calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer 15, 1787-1806.##
Piterah, N. S. M., N. R. Ong, M. H. A. Aziz, J. B. Alcain, W. M. W. N. Haimi and Z. Sauli (2017). Investigation of micropump mechanism for medical application (blood transport application). In AIP Conference Proceedings, volume 1885, page 020299 (5pp).##
Saggere, L. (2015) Membrane actuation for micropumps. In Li, Dongqing, (Ed.), Encyclopedia of Microfluidics and Nano-fluidics, pages 1741–1746. Springer US,##
Sateesh, J., K. G. Sravani, R. A. Kumar, K. Guha and K. S. Rao (2018). Design and flow analysis of MEMS based piezo-electric micro pump. Microsystem Technologies 24(3), 1609-1614.##
Shoji, S., S. Nakagawa and M. Esashi (1990). Micropump and sample-injector for integrated chemical analyzing systems. Sensors and Actuators A: Physical 21(13), 189-192.##
Smits, J. G. (1990). Piezoelectric micropump with three valves working peristaltically. Sensors and Actuators A: Physical 21(13), 203-206.##
Stemme, E. and G. Stemme (1993). A valveless diffuser/nozzlebased fluid pump. Sensors and Actuators A: Physical 39(2), 159-167.##
Su, G. and R. M. Pidaparti (2010). Transport of drug particles in micropumps through novel actuation. Microsystem Technologies 16(4), 595-606.##
Taguchi, G. (1987). Engineering methods to optimize quality and minimize costs. System of Experimental Design 1, 1-85.##
Verma, P., D. Chatterjee and T. Nagarajan (2009). Design and development of a modular valveless micropump on a printed circuit board for integrated electronic cooling. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 223(4), 953-963.##
Yamahata, C., C. Lotto, E. Al-Assaf and M. A. M. Gijs (2005). A PMMA valveless micropump using electromagnetic actuation. Microfluidics and Nanofluidics 1(3),197-207.##
Yao, J., G. R. Liu, D. Qian, C. L. Chen and G. X. Xu (2013). A moving-mesh gradient smoothing method for compressible CFD problems. Mathematical Models and Methods in Applied Sciences 23(2), 273-305.##
Yao, Q., D. Xu, L. S. Pan, A. L. Melissa Teo, W. M. Ho, V. S. Peter Lee and M. Shabbir (2007). CFD simulations of flows in valveless micropumps. Engineering Applications of Computational Fluid Mechanics 1(3), 181-188.##
Yazdani, A. and A. Mohseni (2017). Three-dimensional aerothermodynamic optimization of the stator blade of an axial-flow gas turbine in an open-source platform. Modares Mechanical Engineering 17(10), 176-184. (in Persian).##
Zahn, J. D. (2015). Integrated microdevices for medical diagnostics. In Li, Dongqing (ed.) Encyclopedia of Microfluidics and Nanofluidics, pages 1411– 1418. Springer New York.##
Zengerle, R. and M. Richter (1994). Simulation of microfluid systems. Journal of Micromechanics and Microengineering 4(4), 192.##
Zhu, M., P. Kirby, M. Wacklerle, M. Herz and M. Richter (2009). Optimization design of multimaterial micropump using finite element method. Sensors and Actuators A: Physical 149(1),130-135.##