Improving Thermal Performance of Rectangular Microchannel Heat Sinks using Porous Layer: CFD Simulation and Optimization

Document Type : Regular Article

Authors

1 Mechanical Engineering Group, Pardis College, Isfahan University of Technology, Isfahan 8415683111, Iran

2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran

10.47176/jafm.16.08.1745

Abstract

Microchannel heat sinks are very widely used due to their high heat transfer coefficients and low refrigerant requirements. Nevertheless, microchannel heat sinks still perform sub-optimally when it comes to thermal performance. Therefore, this paper investigates the individual and combined impacts of different characteristics of porous media on the thermal performance of microchannel. Four porosity values are considered: 0.8, 0.85, 0.9, and 0.95. The evaluation is based on three-dimensional computational fluid dynamics simulations. Due to the large number of degrees of freedom in this study, Constructal Theory and Design of Experiments are employed. In this study, the response surface type is Genetic Aggregation, while the Latin Hypercube Sampling algorithm is used for data sampling and Genetic algorithm is used for optimization. Combining porous layers with microchannel heat sinks reduces maximum temperatures about 3K. It is also observed that a lower maximum surface temperature is achieved in the cases with less porosity. Furthermore, the optimal geometry and size of the microchannels with porous layers are determined.

Keywords

Main Subjects


Alazmi, B., & Vafai, K. (2001). Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. International Journal of Heat and Mass Transfer 44, 1735–1749. https://doi.org/10.1016/S0017-9310(00)00217-9.##
Amiri, A., Vafai, K., & Kuzay, T. M. (1995). Effect of boundary conditions on non-darcian heat transfer through porous media and experimental comparisons, Numer. Heat Transfer
Journal Part A,
27, 651–664. https://doi.org/10.1080/10407789508913724##
Bello-Ochende, T., Liebenberg, L., & Meyer, J. P. (2007). Constructal cooling channels for micro-channel heat sinks. International Journal of Heat
and Mass Transfer,
50, 4141–4150. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.019##
Bogdan, I. P. & A. A. Mohamad (2004). An experimental and numerical study on heat transfer enhancement for gas heat exchangers fitted with porous media. International Journal of Heat and Mass Transfer. 47, 4939–4952. https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.014##
Ghahremannezhad, A., & Vafai, K. (2018). Thermal and hydraulic performance enhancement of microchannel heat sinks utilizing porous substrates. International Journal of Heat
and Mass Transfer.
122, 1313–1326. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.024##
Hetsroni, G., Gurevich, M., & Rozenblit, R. (2006). Sintered porous medium heat sink for cooling of high-power mini-devices. International Journal of Heat and Fluid Flow, 27, 259–266. https://doi.org/10.1016/j.ijheatfluidflow.2005.08.005##
Hsu, C. T., & Cheng, P. (1990). Thermal dispersion in a porous medium. International Journal of Heat and Mass Transfer, 33, 1587–1597. https://doi.org/10.1016/0017-9310(90)90015-M##
Hung, T. C., Huang, Y. X., & Yan, W. M. (2013a). Thermal performance analysis of porous-microchannel heat sinks with different configuration designs. International Journal of Heat and Mass Transfer, 66, 235–243. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.019##
Hung, T. C., Huang, Y. X., & Yan, W. M. (2013b). Thermal performance of porous microchannel heat sink: Effects of enlarging channel outlet. International Communications in Heat
 and Mass Transfer
, 48, 86–92. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.001##
Jiang, P. X., & Lu, X. C. (2006). Numerical simulation of fluid flow and convection heat transfer in sintered porous channels. International Journal of Heat and Mass Transfer, 49, 1685–1695. https://doi.org/10.1016/j.ijheatmasstransfer.2005.10.026##
Mahalingam, M (1985). Thermal management in semiconductor device packaging. Proceedings
of the IEEE,
73, 1396–1404. https://doi.org/10.1109/PROC.1985.13300##
Maji, A., & Choubey, G. (2020). Improvement of heat transfer through fins: A brief review of recent developments. Heat Transfer, 49, 1658-1685. https://doi.org/10.1002/htj.21684##
Ould-Amer, Y., Chikh, S., Bouhadef, K., & Lauriat, G. (1998). Forced convection cooling enhancement by use of porous materials. International Journal of Heat and Fluid Flow, 19, 251–258. https://doi.org/10.1016/S0142-727X(98)00004-6##
Peng, X. F., Peterson, G. P., & Wang, B. X. (1994). Heat Transfer Characteristics of Water Flowing Through Microchannels. Experimental
Heat Transfer
, 7, 265–283. https://doi.org/10.1080/08916159408946485##
Peng, X. F., & Peterson, G. P. (1995). The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels. International Journal of Heat and Mass Transfer, 38, 755–758. https://doi.org/10.1016/0017-9310(95)93010-F##
Salimpour, M. R., Sharifhasan, M., & Shirani, E. (2011). Constructal optimization of the geometry of an array of micro-channels. International Communications in Heat and
Mass Transfer
, 38, 93–99. https://doi.org/10.1016/j.icheatmasstransfer.2010.10.008##
Salimpour, M. R., Sharifhasan, M., & Shirani, E. (2013). Constructal optimization of microchannel heat sinks with noncircular cross sections. Heat Transfer Engineering, 34, 863–874. https://doi.org/10.1080/01457632.2012.746552##
Salimpour, M. R., Al-Sammarraie, A., Forouzandeh, A., & Farzaneh, M. (2019). Constructal Design of Circular Multilayer Microchannel Heat Sinks. Journal of Thermal Science and
Engineering Applications
, 11, 011001-10. https://doi.org/10.1115/1.4041196##
Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters. 2, 126–129. https://doi.org/10.1109/EDL.1981.25367##
Vafai, K., & Tien, C. L. (1981). Boundary and inertia effects on flow and heat transfer in porous media. International Journal of Heat and Mass Transfer, 24, 195–203. https://doi.org/10.1016/0017-9310(81)90027-2##
Vafai, K. (1984). Convective flow and heat transfer in variable porosity media. Journal of
Fluid Mechanics
25, 233–259. https://doi.org/10.1017/S002211208400207X##
Vafai, K., & Thiyagaraja, R. (1987). Analysis of flow and heat transfer at the interface region of a porous medium. International Journal of Heat
and Mass Transf
er 30, 1391–1405. https://doi.org/10.1016/0017-9310(87)90171-2##
Wan, Z. M., Liu, J., Su, K. L., Hu, X. H., & M, S. S. (2011). Flow and heat transfer in porous micro heat sink for thermal management of high power LEDs. Microelectronics Journal, 42, 632–637. https://doi.org/10.1016/j.mejo.2011.03.009##
Wang, G., Hao, L., & Cheng, P. (2009). An experimental and numerical study of forced convection in a microchannel with negligible axial heat conduction. International Journal of Heat and Mass Transfer, 52, 1070–1074. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.038##
Yang, Y. T., & Hwang, C. Z. (2003). Calculation of turbulent flow and heat transfer in a porous-baffled channel. International Journal of Heat
and Mass Transfer.
46, 771–780. https://doi.org/10.1016/S0017-9310(02)00360-5##
Yilmaz, A., Büyükalaca, O., & Yilmaz, T. (2000). Optimum shape and dimensions of ducts for convective heat transfer in laminar flow at constant wall temperature. International Journal of Heat and Mass Transfer, 43, 767–775. https://doi.org/10.1016/S0017-9310(99)00189-1##
Volume 16, Issue 8
August 2023
Pages 1574-1586
  • Received: 04 January 2023
  • Revised: 14 March 2023
  • Accepted: 27 March 2023
  • Available online: 31 May 2023