Experimental and Numerical Dynamic Investigation of a Swirling Jet: Application to Improve the Efficiency of Air Diffusion in an Occupied Zone

Document Type : Regular Article


1 Department of Electromechanics, University Mohamed El Bachir El Ibrahimi of Bordj Bou Arreridj, El-Anasser, 34030 Algeria

2 Control, Testing, Measurement and Mechanical Simulation Laboratory, University Hassiba Benbouali Hay Salem, National Road 19, Chlef, 02000 Algeria

3 Department of Software and IT Engineering, École de technologie supérieure, Rue Notre-Dame Ouest, Montréal, QC, H3C 1K3 Canada

4 Department of Mechanical Engineering, Université de Sherbrooke 2500 Blvd. de l’Université, Sherbrooke Qc, J1K 2R1 Canada



When reducing the energy prerequisites of buildings, the correct distribution of fresh air flows injected into the living rooms poses a problem. If the problem of mixing the injected air in the ambient air is not effectively solved, there will be a strong deterioration in air quality and comfort. In this research, a new design of swirling diffuser is investigated experimentally and numerically using large eddy simulations. The influence of fins is studied for the improvement of air diffusion and jet mixing with ambient air. The study was carried out for a fins angle of 30° with the jet's axis and 60° with the blowing orifice's plane with the condition of uniform heat flux of the air. The working fluid used is air. It has been validated that using fins leads to a greater spreading of the jet and good air mixing compared to those obtained from smooth tubes (circular nozzle). To enhance the accuracy of the turbulence models' predictions, three turbulence models are tested: the wall-adapting local eddy-viscosity turbulence model (LES/WALEVM), Smagorinski-Lilly (LES/S-LM) model and the kinetic-energy transport model (LES/K-ETM). It is worth highlighting that the LES/K-ETM model is well established in the prediction of swirling flows, which have been successfully compared with experimental results.


Main Subjects

Awbi, H. B. (1989). Application of computational fluid dynamics in room ventilation. Building and Environment, 24(1), 73-84. https://doi.org/10.1016/0360-1323(89)90018-8##
Aziz, M, A., Gad, I. A. M., El Shahat, F. A., & Mohammed, R. H. (2012). Experimental and numerical study of influence of air ceiling diffusers on room air flow characteristics. Energy and Buildings, 55, 738-746. https://doi.org/10.1016/j.enbuild.2012.09.027##
Bennia, A., H. Fellouah, A. Khelil, L. Loukarfi and H. Naji (2020). Experiments and large-eddy simulations of lobed and swirling turbulent thermal jets for HVAC's applications. Journal of Applied Fluid Mechanics 13(1), 103-117. https://doi.org/10.29252/jafm.13.01.29970##
Bennia, A., Loukarfi, L., Khelil, A., Mohamadi, S., Braikia, M., & Naji, H. (2018). Experimental and numerical investigation of a turbulent lobed diffuser jet: Application to residential comfort. Mechanics & Industry, 19(1), 104. https://doi.org/10.1051/meca/2016078##
Bennia, A., Loukarfi, L., Khelil, A., Mohamadi, S., Braikia, M., & Naji, H. (2016). Contribution to the experimental and numerical dynamic study of a turbulent jet issued from lobed diffuser. Journal of Applied Fluid Mechanics, 9(6), 2957-2967. https://doi.org/10.29252/jafm.09.06.25953##
Bennia, A., Loukarfi, L., Braikia, M., Khelil, A., & Naji, H. (2015). Etude expérimentale d'un jet turbulent à diffuseur muni de lobes: Application au confort dans les locaux à usage d'habitation.  Nature & Technology, (13), 54.##
Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H., & Raad, P. E. (2008). Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, 130, 078001. https://doi.org/10.1115/1.2960953##
Clark, R. A., Ferziger, J. H., & Reynolds, W. C. (1979). Evaluation of subgrid-scale models using an accurately simulated turbulent flow. Journal of fluid mechanics, 91(1), 1-16. https://doi.org/10.1017/S002211207900001X##
Dimotakis, P. E. (2000). The mixing transition in turbulents flows. Journal of Fluid Mechanics, 409, 68-69. https://doi.org/10.1017/S0022112099007946##
Hu, S. C. (2003). Airflow characteristics in the outlet region of a vortex room air diffuser. Building and Environment, 38(4), 553-561. https://doi.org/10.1016/S0360-1323(02)00187-7##
Huang, Y., & Yang, V. (2009). Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in Energy and Combustion Science, 35(4), 293-364. https://doi.org/10.1016/j.pecs.2009.01.002##
Huo, Y., Haghighat, F., Zhang, J. S., & Shaw, C. Y. (2000). A systematic approach to describe the air terminal device in CFD simulation for room air distribution analysis. Building and Environment, 35(6), 563-576. https://doi.org/10.1016/S0360-1323(99)00047-5##
Jones, D. A., & Clarke, D. B. (2008). Simulation of flow past a sphere using the fluent code. Maritime Platforms Division DSTO Defence Science and Technology Organisation, 506 Lorimer St, Fishermans Bend, Victoria 3207 Australia.##
Khan, M. A. H., Bennia, A., Lateb, M., & Fellouah, H. (2022). Numerical investigation of thermal comfort using the mixing and displacement ventilation systems within a fitting room. International Journal of Heat and Mass Transfer, 198, 123379. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123379##
Kim, S. E. (2004). Large eddy simulation using unstructured meshes and dynamic subgrid-scale turbulence models. Proceed­ings of the 34th AIAA Fluid Dynamics Conference and Exhibit, Portland, Oregon, 2004-2548. United States. https://doi.org/10.2514/6.2004-2548##
Kim, W. W., &  Menon, S. (1997). Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. Proceedings of the 35th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 210. United States.##
Koskela, H. (2004). Momentum source model for CFD-simulation of nozzle duct air diffuser. Energy and Buildings, 36(10), 1011-1020. https://doi.org/10.1016/j.enbuild.2004.06.013##
Kumar, M., Chong, C. T., & Karmakar, S. (2022). Comparative assessment of combustion characteristics of limonene, Jet A-1 and blends in a swirl-stabilized combustor under the influence of pre-heated swirling air. Fuel, 316, 123350. https://doi.org/10.1016/j.fuel.2022.123350##
Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. Advances in geophysics, 18, 237-248. https://doi.org/10.1016/S0065-2687(08)60464-1##
Liu, M., Zhang, Y., & Pan, J. (2017). Experimental investigation of the aerodynamic characteristics of a high-speed train under crosswind conditions. Journal of Wind Engineering and Industrial Aerodynamics, 166, 22-32. https://doi.org/10.1016/j.jweia.2018.03.021##
Luo, S., Heikkinen, J., & Roux, B. (2004). Simulation of air flow in the IEA Annex 20 test room—validation of a simplified model for the nozzle diffuser in isothermal test cases. Building and Environment, 39(12), 1403-1415 https://doi.org/10.1016/j.buildenv.2004.04.006##
Nielsen, P. V. (1976). Flow in air conditioned rooms.  [Doctorol thesis, the Technical University]. Denmark.##
Nielsen, P. V. (1989). Representation of boundary conditions at supply openings. Dept. of Building Technology and Structural Engineering, Aalborg University. Gul Serie Vol. R8902 No. 4.##
Nielsen, P. V. (1992). Description of supply openings in numerical models for room air distribution. ASHRAE Transactions, 98, 963–971. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902017766811371##
Nielsen, P. V. (1997). The Box Method: A Practical Procedure for Introduction of an Air Terminal Device in CFD Calculation. Dept. of Building Technology and Structural Engineering, Aalborg University. Gul serie Vol. R9744 No. 34.##
Nielsen, P. V. (1998). The Prescribed Velocity Method: A Practical Procedure for Introduction of an Air Terminal Device in CFD Calculation. Dept. of Building Technology and Structural Engineering, Aalborg University. Gul serie Vol. R9827 No. 40.##
Nielsen, P. V. (2015). Fifty years of CFD for room air distribution. Building and Environment, 91, 78-90. https://doi.org/10.1016/j.buildenv.2015.02.035##
Raftery, P., Bauman, F., Schiavon, S., & Epp, T. (2015). Laboratory testing of a displacement ventilation diffuser for underfloor air distribution systems. Energy and Buildings, 108, 82-91. http://dx.doi.org/10.1016/j.enbuild.2015.09.005##
Sajadi, B., Saidi, M. H., & Mohebbian, A. (2011). Numerical investigation of the swirling air diffuser: Parametric study and optimization. Energy and Buildings, 43(6), 1329-1333. https://doi.org/10.1016/j.enbuild.2011.01.018##
Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2##
Tavakoli, E., & Hosseini, R. (2013). Large eddy simulation of turbulent flow and mass transfer in far-field of swirl diffusers. Energy and Buildings, 59, 194-202. https://doi.org/10.1016/j.enbuild.2012.12.029##
Villafruela, J. M., Castro, F., San José, J. F., & Saint-Martin, J. (2013). Comparison of air change efficiency, contaminant removal effectiveness and infection risk as IAQ indices in isolation rooms. Energy and Buildings, 57, 210-219. https://doi.org/10.1016/j.enbuild.2012.10.053##
Wang, K., Xie, D., Cao, Q., Hu, J., Tang, Y., Shi, B., & Wang, N. (2022). Characteristics of oxy-methane flame in an axial/tangential swirl jet burner. Experimental Thermal and Fluid Science, 139, 110732. https://doi.org/10.1016/j.expthermflusci.2022.110732##
Xie, D., Cao, Q., Tang, Y., Wang, K., Chen, X., Wang, N., & Shi, B. (2022). Ethanol spray tubular flame established in a swirling air flow. Experimental Thermal and Fluid Science, 134, 110616. https://doi.org/10.1016/j.expthermflusci.2022.110616##
Yau, Y. H., Poh, K. S., & Badarudin, A. (2018). A numerical airflow pattern study of a floor swirl diffuser for UFAD system. Energy and Buildings, 158, 525-535. https://doi.org/10.1016/j.enbuild.2017.10.037##
Zhao, B., Li, X., & Yan, Q. (2003). A simplified system for indoor airflow simulation. Building and Environment, 38(4), 543-552. https://doi.org/10.1016/S0360-1323(02)00182-8##