Dynamics of Microbubbles Oscillating in Rheopectic Fluids Subject to Acoustic Pressure Field

Document Type : Regular Article


1 Department of Mechanical Engineering, University of Tehran, Tehran, Iran

2 Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box: 43841-119, Rezvanshahr, Iran



In the present work, the dynamics of a single spherical gas bubble surrounded by a rheopectic fluid obeying the Quemada model is numerically investigated while the bubble undergoes oscillatory motion due to acoustic forcing. The generalized form of the Rayleigh–Plesset equation has been used for studying bubble dynamics in Quemada fluids. The integro-differential equation representing the dynamics of the bubble is solved numerically using the finite-element method (FEM) and also the Gauss–Laguerre quadrature (GLQ) method. The effect of rheopexy number (Rx) and viscosity ratio (ξ) are then investigated over a wide range of working parameters. Numerical results show that the rheopectic behavior of the fluid surrounding the bubble can dramatically affect the bubble dynamics. It is predicted that for highly anti-thixotropic fluids, harmonics are affected so much so that the bubble may exhibit chaotic behavior. For instance, at Rx = 0.001 and ξ = 1/81, a one-micron-sized bubble may attain a size almost 30 times of its initial size. The general conclusion is that, in sonography, microbubbles dispersed in rheopectic fluids may indeed be considered as a potent ultrasound contrast agent provided that the fluid is just moderately anti-thixotropic otherwise its chaotic response might damage the adjacent tissues. 


Main Subjects

Abdollahi, A., (2019). Effect of rheopexy on the naturatural frequency of spherical bubbles subjected to acoustic pressure field. [Masters thesis, Univeristy of Tehran].##
Ahmadpour, A., Amini-Kafiabad, H., & Sadeghy, K. (2014). Dynamic of gas bubbles surrounded by a dullaert-mewis thixotropic fluid. Nihon Reoroji Gakkaishi, 41(5), 309-318. http://dx.doi.org/10.1678/rheology.41.309##
Ahmadpour, A., Amini-Kafiabad, H., Samadi, J., & Sadeghy, K. (2011). The rise of second harmonics in forced oscillation of gas bubbles in thixotropic fluids. Nihon Reoroji Gakkaishi, 39(3), 113-117. https://doi.org/10.1678/rheology.39.113##
Allen, J. S., & Roy, R. A. (2000). Dynamics of gas bubbles in viscoelastic fluids. I. Linear viscoelasticity. The Journal of the Acoustical Society of America, 107(6), 3167-3178. https://doi.org/10.1121/1.429344##
Andonova, V., & Sekhar, G. C. (2016). Rise time Calculations of a single air bubble under the influence of gravity in a pool of water. Journal of Applied Science and Engineering Methodologies, 2(3), 426-434. http://jasem.in/2016/23426434.html##
Arefmanesh, A., Arani, M. M., & Arani, A. A. (2022). Dynamics of a bubble in a power-law fluid confined within an elastic Solid, European Journal of Mechanics / B Fluids, 94, 29–36. https://doi.org/10.1016/j.euromechflu.2022.02.002##
Battistella, A., Van-Schijndel, S., Baltussen, M. W., Roghair, I., & Van-Sint-Annaland, M. (2017). Front-tracking simulations of bubbles in non-newtonian fluids. 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries (CFD 2017), (pp. 469-478). SINTEF Academic Press. https://research.tue.nl/en/publications/front-tracking-simulations-of-bubbles-in-non-newtonian-fluids##
Canchi, S., Kelly, K., Hong, Y., King, M. A., Subhash, G., & Sarntinoranont, M. (2017). Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue. Journal of the Mechanical Behavior of Biomedical Materials, 74, 261-273. http://dx.doi.org/10.1016/j.jmbbm.2017.06.018##
Chahine, G. L., Tanguay, M., & Loraine, G. (2009). Acoustic measurements bubbles in biological tiessure. Journal of Hydrodynamics, 21(1), 47-64. https://doi.org/10.1016/S1001-6058(08)60118-3##
Chakibi, H., Hénaut, I., Salonen, A., Langevin, D., & Argillier, J. F. (2018). Role of bubble–drop interactions and salt addition in flotation performance. Energy & Fuels, 32(3), 4049-4056. https://doi.org/10.1021/acs.energyfuels.7b04053##
Cunha, F. R. & Albernaz, D. L. (2013). Oscillatory motion of a spherical bubble in a non-Newtonian fluid. Journal of Non-Newtonian Fluid Mechanics, 191, 35-44. https://doi.org/10.1016/j.jnnfm.2012.10.010##
Dai, B., Liu, C., Liu, S., Wang, D., Wang, Q., Zou, T., & Zhou, X. (2023). Life cycle techno-enviro-economic assessment of dual-temperature evaporation transcritical CO2 high-temperature heat pump systems for industrial waste heat recovery. Applied Thermal Engineering, 219, Part B, 119570. https://doi.org/10.1016/j.applthermaleng.2022.119570##
Dollet, B., Marmottant, P., & Garbin, V. (2019). Bubble dynamics in soft and biological matter. Annual Review of Fluid Mechanics, 51, 331-355.    https://doi.org/10.1146/annurev-fluid-010518-040352##
Dudek, M., & Øye, G. (2018). Microfluidic study on the attachment of crude oil droplets to gas bubbles. Energy & Fuels, 32(10), 10513-10521. http://hdl.handle.net/11250/2582618##
Jaluria, Y. (1988). Computer methods for engineering, Allyn and Baycon Inc., Boston. https://www.amazon.com/Computer-Methods-Engineering-Allyn-Bacon/dp/0205106366##
Jim'enez-Fernandez, J., & Crespo, A. (2005). Bubble oscillation and inertial cavitation in viscoelastic fluids. Ultrasonics, 43(8), 643-651. https://doi.org/10.1016/j.ultras.2005.03.010##
Kafiabad, H. A., & Sadeghy, K. (2010). Chaotic behavior of a single spherical gas bubble surrounded by a Giesekus liquid: A numerical study. Journal of Non-Newtonian Fluid Mechanics, 165(13-14), 800-811. http://dx.doi.org/10.1016/j.jnnfm.2010.04.010##
Karapetsas, G., Photeinos, D., Dimakopoulos, Y., & Tsamopoulos, J. (2019). Dynamics and motion of a gas bubble in a viscoplastic medium under acoustic. Journal of Fluid Mechanics, 865, 381-413. https://doi.org/10.1017/jfm.2019.49##
Kelly, W. J. (2008). Using computational fluid dynamics to characterize and improve bioreactor performance. Biotechnology and applied biochemistry, 49(4), 225-238. https://doi.org/10.1042/ba20070177##
Liu, H. L., Fan, C. H., Ting, C. Y., & Yeh, C. K. (2014). Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics, 4(4), 432. https://doi.org/10.7150%2Fthno.8074##
McDannold, N., Vykhodtseva, N., & Hynynen, K. (2006). Targeted disruption of the blood–brain barrier with focused ultrasound: association with cavitation activity. Physics in Medicine & Biology, 51(4), 793.https://doi.org/10.1088/0031-9155/51/4/003##
Moseley, K., Fairweather, M. & Harbottle, D. (2019). Settling dynamics of two identical vertically aligned spheres in a thixotropic fluid. Journal of Non-Newtonian Fluid Mechanics, 271, 104146. https://doi.org/10.1016/j.jnnfm.2019.104146##
Mukundakrishnan, K., Ayyaswamy, P. S. & Eckmann, D. M. (2009). Bubble motion in a blood vessel: shear stress induced endothelial cell injury. https://doi.org/10.1115/1.3153310##
Nesser, H. J., Karia, D. H., Tkalec, W., & Pandian, N. G. (2002). Therapeutic ultrasound in cardiology. Herz, 27(3), 269-278. https://doi.org/10.1007/s00059-002-2362-y##
Perera, R., Nittayacharn, P., Cooley, M., Jung, O., & Exner, A. A. (2018). Ultrasound contrast agents and delivery systems in cancer detection and therapy. Advances in Cancer Research, 139, 57-84. https://doi.org/10.1016/bs.acr.2018.04.002##
Plesset, M. S. (1949). The dynamics of cavitation bubblesJournal of Applied Mechanics. 16 (3), 228–231.https://doi.org/10.1115/1.4009975##
Quemada, D. (1984). Towards a unified model of elasto-thixotropy of biofluids. Biorheology, 21(4), 423–436. https://doi.org/10.3233/bir-1984-21403##
Rayleigh, L. (1917). On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34 (200),  94–98. https://doi.org/10.1080/14786440808635681##
Sadeghy, K., & Vahabi, M. (2016). The effect of thixotropy on a rising gas bubble: A numerical study. Korea-Australia Rheology Journal, 28(3), 207-216. http://dx.doi.org/10.1007/s13367-016-0021-8##
Saththasivam, J., Loganathan, K., & Sarp, S. (2016). An overview of oil–water separation using gas flotation systems. Chemosphere, 144, 671-680.  https://doi.org/10.1016/j.chemosphere.2015.08.087##
Segers, T., Kruizinga, P., Kok, M. P., Lajoinie, G., De Jong, N., & Versluis, M. (2018). Monodisperse versus polydisperse ultrasound contrast agents: Non-linear response, sensitivity, and deep tissue imaging potential. Ultrasound in Medicine & Biology, 44(7), 1482-1492.https://doi.org/10.1016/j.ultrasmedbio.2018.03.019##
Sheeran, P. S., Yoo, K., Williams, R., Yin, M., Foster, F. S., & Burns, P. N. (2017). More than bubbles: creating phase-shift droplets from commercially available ultrasound contrast agents. Ultrasound in Medicine & Biology, 43(2), 531-540. https://doi.org/10.1016/j.ultrasmedbio.2016.09.003##
Shima, A., & Tsujino, T. (1981). The effect of polymer concentration on the bubble behavior and impulse pressure. Chemical Engineering Science, 36 (5), 931–935. https://doi.org/10.1016/0009-2509(81)85047-6##
Shpak, O., Verweij, M., Jong, N. D., & Versluis, M. (2016). Droplets, bubbles and ultrasound interactions. Therapeutic Ultrasound, 880, 157-174.https://doi.org/10.1007/978-3-319-22536-4_9##
Sokolov, I. V., Didenkulov, I. N., Selivanovsky, D. A., & Semenov, V. E. (2000). Bubble Shape Instability in a Strong Acoustic Field. AIP Conference Proceedings, 524, 371. https://doi.org/10.1063/1.1309244##
Theodore, L., Dupont, R. R., & Ganesan, K. (2017). Unit operations in environmental engineering. John Wiley & Sons. https://www.wiley.com/en-us/Unit+Operations+in+Environmental+Engineering-p-9781119283706##
Wang, Z., Ma, J., Gao, H., Stuedlein, A. W., He, J., & Wang, B. (2020). Unified thixotropic fluid model for soil liquefaction. Géotechnique, 70(10), 849-862.  http://dx.doi.org/10.1680/jgeot.17.p.300##
Warnez, M. T., & Johnsen, E. (2015). Numerical modeling of bubble dynamics in viscoelastic media with relaxation. Physics of Fluids, 27(6), 063103. https://doi.org/10.1063/1.4922598##
Zhang, Y., & Li, S. (2014). Mass transfer during radial oscillations of gas bubbles in viscoelastic mediums under acoustic excitation. International Journal of Heat and Mass Transfer, 69, 106-116. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.10.019##