Experimental and Simulation Study on the Emissions of a Multi-Point Lean Direct Injection Combustor

Document Type : Regular Article


School of Power and Energy, Northwestern Polytechnical University, Xi`an, Shaanxi, 710072, China



Spurred by the world’s attention to pollution emissions from commercial aero-engines, the International Civil Aviation Organization (ICAO) has made more stringent emission regulations for civil aircraft engines, especially the NOx emission.This paper develops a Five-Point lean direct injection (LDI) combustor with three swirler schemes to reduce the emissions of commercial aircraft engines. The flowfield of the combustor is studied numerically. Moreover, the combustion efficiency and gaseous emissions in different inlet conditions and fuel ratios of the main stage (α) are studied experimentally. The corresponding results reveal that, under a fuel-air ratio (FAR) between 0.0130 and 0.0283 and an α value between 30% and 60%, the combustion efficiency is 99.18%, 98.83%, and 99.03% when the pilot stage works alone, and 99.69%, 99.23%, and 99.75% when the pilot and main stage work simultaneously. Furthermore, the experimental results suggest that the NOx emission decreases as α increases, demonstrating that the convergent swirler has a tremendous advantage in reducing NOx emissions over Venturi.


Main Subjects

Cai, J. (2006). Aerodynamics of lean direct injection combustor with multi-swirler arrays. (Doctoral dissertation, University of Cincinnati.). http://rave.ohiolink.edu/etdc/view?acc_num=ucin1148233034##
Chen, J., Li, J., Yuan, L., & Hu, G. (2019). Flow and flame characteristics of a RP-3 fuelled high temperature rise combustor based on RQL. Fuel, 235, 1159-1171. https://doi.org/10.1016/j.fuel.2018.08.115##
Chiming, L., Tacina, K. M., & Wey, C. (2007). High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center. https://ntrs.nasa.gov/citations/20070022362.##
Davoudzadeh, F. (2004). Supersonic Rocket Thruster Flow Predicted by Numerical Simulation. https://ntrs.nasa.gov/citations/20050215166##
Dewanji, D., & Rao, A. G. (2015a). Spray combustion modeling in lean direct injection combustors, Part I: Single-element LDI. Combustion Science and Technology, 187(4), 537-557. https://doi.org/10.1080/00102202.2014.965810##
Dewanji, D., & Rao, A. G. (2015b). Spray combustion modeling in lean direct injection combustors, Part II: Multi-point LDI. Combustion Science and Technology, 187(4), 558-576. https://doi.org/10.1080/00102202.2014.958476##
Dewanji, D., Rao, A. G., Pourquie, M. J. B. M., & Van Buijtenen, J. P. (2012). Investigation of flow characteristics in lean direct injection combustors. Journal of Propulsion and Power, 28(1), 181-196. https://doi.org/10.2514/1.B34264##
Fan, X. J., Xu, G., Liu, C., Wang, J. , & Zhang, C. (2020)  Experimental investigations of the flow field structure and interactions between sectors of a double-swirl low-emission combustor. Journal of Thermal Science, 29(11), 43–51. https://doi.org/10.1007/s11630-020-1228-z##
Foust, M., Thomsen, D., Stickles, R., Cooper, C., & Dodds, W. (2012). Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines. In 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (p. 936). https://doi.org/10.2514/6.2012-936##
Fristrom, R. M and Westenberg, A. A. (1965). Flam Structure, MeGraw-Hill.##
Fu, Y. (2008). Aerodynamics and combustion of axial swirlers (Doctoral dissertation, University of Cincinnati). http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204551619##
Gejji, R. M., Huang, C., Yoon, C., & Anderson, W. (2014). A Parametric Study of Combustion Dynamics in a Single-Element Lean Direct Injection Gas Turbine Combustor: Part II: Experimental Investigation. In 52nd Aerospace Sciences Meeting (p. 0133). https://doi.org/10.2514/6.2014-0133##
Gugulothu, S. K. & Nutakki, P. K. (2019). Dynamic fluid flow characteristics in the hydrogen-fuelled scramjet combustor with transverse fuel injection. Case Studies in Thermal Engineering, 14, 100448. https://doi.org/10.1016/j.csite.2019.100448##
Hatem, F. A., Alsaegh, A. S., Al-Faham, M., Valera-Medina, A., Chong, C. T., & Hassoni, S. M. (2018). Enhancing flame flashback resistance against Combustion Induced Vortex Breakdown and Boundary Layer Flashback in swirl burners. Applied energy, 230, 946-959. https://doi.org/10.1016/j.apenergy.2018.09.055##
Heath, C. M. (2014). Characterization of swirl-venturi lean direct injection designs for aviation gas turbine combustion. Journal of Propulsion and Power, 30(5), 1334-1356. https://doi.org/10.2514/1.B35077##
Heath, C. M. (2016). Parametric modeling investigation for radially staged low-emission combustion. Journal of Propulsion and Power, 32(2), 500-515. https://arc.aiaa.org/doi/10.2514/1.B35867##
Hicks, Y. R. & Tacina, M. (2013, July). Comparing a Fischer-Tropsch Alternate Fuel to JP-8 and their 50-50 Blend: Flow and Flame Visualization Results. In 2012 Central States Section of the Combustion Institute Spring Technical Meeting (No. NASA/TM-2013-217884). https://ntrs.nasa.gov/citations/20140000730##
Hicks, Y. R., Heath, C. M., Anderson, R. C., & Tacina, K. M. (2012, April). Investigations of a combustor using a 9-point swirl-venturi fuel injector: recent experimental results. In 20th International Symposium on Air Breathing Engines (ISABE 2011) (No. E-18001). https://ntrs.nasa.gov/citations/20120008517##
Huang, C., Gejji, R. M., Anderson, W. E., Yoon, C., & Sankaran, V. (2014). Combustion dynamics behavior in a single-element lean direct injection (ldi) gas turbine combustor. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3433). https://doi.org/10.2514/6.2014-3433##
Huang, C., Gejji, R., Anderson, W., Yoon, C., & Sankaran, V. (2020). Combustion dynamics in a single-element lean direct injection gas turbine combustor. Combustion Science and Technology, 192(12), 2371-2398. https://doi.org/10.1080/00102202.2019.1646732##
Kyprianidis, K. G. & Dahlquist, E. (2017). On the trade-off between aviation NOx and energy efficiency. Applied Energy, 185, 1506-1516. https://doi.org/10.1016/j.apenergy.2015.12.055##
Li, Y., Jia, Y., Jin, M., Zhu, X., Ge, B., Mao, R., Ren, L., Chen, M., & Jiao, G. (2022). Experimental Investigations on NO x Emission and Combustion Dynamics in an Axial Fuel Staging Combustor. Journal of Thermal Science, 31, 198-206. https://doi.org/10.1007/s11630-022-1562-4##
Lieuwen, T. C. & Yang, V. (Eds.). (2013). Gas turbine emissions (Vol. 38). Cambridge university press. https://lccn.loc.gov/2012051616##
Lieuwen, T., Torres, H., Johnson, C., & Zinn, B. T. (2001). A mechanism of combustion instability in lean premixed gas turbine combustors. Journal of Engineering for Gas Turbines and Power, 123(1), 182-189. https://doi.org/10.1115/1.1339002##
Mckinney, R. Cheung, A., Sowa, W., & Sepulveda, D. (2007, January). The Pratt & Whitney TALON X low emissions combustor: revolutionary results with evolutionary technology. In 45th AIAA aerospace sciences meeting and exhibit (p. 386). https://doi.org/10.2514/6.2007-386##
Mongia, H. (2003). TAPS: A fourth generation propulsion combustor technology for low emissions. In AIAA International Air and Space Symposium and Exposition: The Next 100 Years (p. 2657). https://doi.org/10.2514/6.2003-2657##
Patel, N., & Menon, S. (2008). Simulation of spray–turbulence–flame interactions in a lean direct injection combustor. Combustion and Flame, 153(1-2), 228-257. https://doi.org/10.1016/j.combustflame.2007.09.011##
Patel, N., Kırtaş, M., Sankaran, V., & Menon, S. (2007). Simulation of spray combustion in a lean-direct injection combustor. Proceedings of the Combustion Institute, 31(2), 2327-2334. https://doi.org/10.1016/j.proci.2006.07.232##
Raju, M. S., & Wey, C. T. (2020). CFD Predictions of Soot & CO Emissions Generated by a Partially-Fueled 9-Element Lean-Direct Injection Combustor. In AIAA Scitech 2020 Forum (p. 2088). https://doi.org/10.2514/6.2020-2088##
SAE International (2011). Procedure for the continuous sampling and measurement of non-volatile particle emissions from aircraft turbine engines. https://infostore.saiglobal.com/en-us/standards/sae-arp-1256-2011-1018428_saig_sae_sae_2370568/##
SAE International (2013). Procedure for the Analysis and Evaluation of Gaseous Emissions from Aircraft Engines. https://infostore.saiglobal.com/en-us/standards/sae-arp-1533-2013-1022736_saig_sae_sae_2382526/##
Tacina, K. M., & Wey, C. (2008). NASA Glenn high pressure low NOx emissions research (No. E-16137). https://ntrs.nasa.gov/citations/20080014197##
Tacina, K. M., Lee, P., Mongia, H., Dam, B. K., He, Z. J., & Podboy, D. P. (2016). A comparison of three second-generation swirl-venturi lean direct injection combustor concepts. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference (p. 4891). https://doi.org/10.2514/6.2016-4891##
Tedder, S. A., Tacina, K. M., Anderson, R. C., & Hicks, Y. R. (2014). Fundamental study of a single point lean direct injector. Part I: effect of air swirler angle and injector tip location on spray characteristics. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3435). https://doi.org/10.2514/6.2014-3435##
Tian, L., Sun, H., Xu, Y., Jiang, P., Lu, H., & Hu, X. (2022). Numerical analysis on combustion flow characteristics of jet-stabilized combustor with different geometry. Case Studies in Thermal Engineering, 32, 101885. https://doi.org/10.1016/j.csite.2022.101885##
Wang, B., Zhang, C., Lin, Y., Hui, X., & Li, J. (2017). Influence of main swirler vane angle on the ignition performance of TeLESS-II combustor. Journal of Engineering for Gas Turbines and Power, 139(1), 011501. https://doi.org/10.1115/1.4034154##
Wang, K., Fan, X., Liu, F., Liu, C., Lu, H., & Xu, G. (2021). Experimental studies on fuel spray characteristics of pressure-swirl atomizer and air-blast atomizer. Journal of Thermal Science, 30, 729-741. https://doi.org/10.1007/s11630-021-1320-z##
Wang, Y., Wu, J., & Lin, Y. (2020). Effects of confinement length of the central toroidal recirculation zone partly confined by the small pilot stage chamber on ignition characteristics. Aerospace Science and Technology, 107, 106277. https://doi.org/10.1016/j.ast.2020.106277##
Xi, Z., Liu, Z., Shi, X., Lian, T., Li, Y. (2022). Numerical investigation on flow characteristics and emissions under varying swirler vane angle in a lean premixed combustor, Case Studies in Thermal Engineering, 31, 101800. https://doi.org/10.1016/j.csite.2022.101800##
Xu, Q., Shen, M., Shi, K., Liu, Z., Feng, J., Xiong, Y., ... & Du, Y. (2021). Influence of jet angle on diffusion combustion characteristics and NOx emissions in a self-reflux burner. Case Studies in Thermal Engineering, 25, 100953. https://doi.org/10.1016/j.csite.2021.100953##
Yu, H., Suo, J., Liang, H., & Zheng, L. (2016). Experimental Study on Effusion Cooling with Tangential Air Inlet. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference (p. 5053). https://doi.org/10.2514/6.2016-5053##
Zargar, O. A. (2020). Improving combustion performance of swirling double-concentric jets flames with rich equivalence ratios. Case Studies in Thermal Engineering, 20, 100648. https://doi.org/10.1016/j.csite.2020.100648##
Zhu Z, Xiong Y, Zheng X, Chen, W., Ren, B., & Xiao, Y. (2021). Experimental and numerical study of the effect of fuel/air mixing modes on NO x and CO Emissions of MILD combustion in a boiler burner. Journal of Thermal Science, 30, 656-667. https://doi.org/10.1007/s11630-020-1323-1##