Computational Analysis of Subcooled Flow Boiling in a Vertical Minichannel with Two Different Shapes under Various Mass Fluxes

Document Type : Regular Article

Authors

Laboratory of Energy and Materials Engineering (LEME), Faculty of Sciences and Technologies (FST), Sultan Moulay Slimane University (SMSU), Beni Mellal, Morocco

10.47176/jafm.16.10.1787

Abstract

In the current research project, two-dimensional numerical simulations are conducted to analyze the effects of geometrical configuration on flow structures and the thermal performances of subcooled flow boiling. The CFD simulations are carried out in two different configurations (straight and periodic constriction expansion) in a minichannel mounted vertically at four mass fluxes (500 kg/m2s; 836.64 kg/m2s; 1170 kg/m2s; and 2535 kg/m2s). The present predicted results exhibit excellent accordance with the previous experiments, with mean errors of 6.39% and 9.78%, demonstrating the efficiency of the present numerical study. The simulation results show that the periodic constriction expansion design provides good mixing between the layers, leading to a 43.11% mean enhancement of the thermal transfer, which is more important than the slight pressure drop penalty of 4.32 for a mass flux of 500 kg/m2s due to the combined pressure drop along the minichannel that resulted from the periodic constriction and expansion regions. Furthermore, the visualization of flow patterns shows that the bubbly flow is the dominant flow regime in the periodic constriction-expansion configuration.

Keywords

Main Subjects


Agostini, B., Fabbri, M., Park, J. E., Wojtan, L., Thome, J. R. & Michel, B. (2007). State of the art of high heat flux cooling technologies. Heat Transfer Engineering, 28(4), 258-281. https://doi.org/10.1080/01457630601117799##
Ahmadi, R., Ueno, T., & Okawa, T. (2012). Bubble dynamics at boiling incipience in subcooled upward flow boiling. International Journal of Heat and Mass Transfer, 97, 114-125. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.050##
Ahmadi, R., & Okawa, T. (2015). Influence of surface wettability on bubble behavior and void evolution in subcooled flow boiling. International Journal of Thermal Sciences, 97, 114-125. https://doi.org/10.1016/j.ijthermalsci.2015.06.012##
Ali, R., & Palm, B. (2011). Dryout characteristics during flow boiling of R134a in vertical circular minichannels. International Journal of Heat and Mass Transfer, 54, 2434-2445. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.018##
Azzolin, M., & Bortolin, S. (2021). Condensation and flow boiling heat transfer of a HFO/HFC binary mixture inside a minichannel. International Journal of Thermal Sciences, 159, 106638. https://doi.org/10.1016/j.ijthermalsci.2020.106638##
Bahreini, M., Ramiar, A., & Ranjbar, A. A. (2015). Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient. Nuclear Engineering and Design, 238-248. https://doi.org/10.1016/j.nucengdes.2015.08.004##
Bahreini, M., Ramiar, A., & Ranjbar, A. A. (2016). Numerical Simulation of Subcooled Flow Boiling under Conjugate Heat Transfer and Microgravity Condition in a Vertical Mini Channel. Applied Thermal Engineering, 170-185. https://doi.org/10.1016/j.applthermaleng.2016.11.016##
Boure, J. A., Bergles, A. E., & Tong, L. S. (1973). Review of two-phase flow instability. Nuclear Engineering and Design, 25(2), 165-192. https://doi.org/10.1016/0029-5493(73)90043-5##
Bower, J. S., & Klausner, J. F.  (2006). Gravity independent subcooled flow boiling heat transfer regime. Experimental Thermal and Fluid Science. 10.1615/ICHMT.2004.IntThermSciSemin.720##
Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100, 130-139. https://doi.org/10.1016/0021-9991(92)90240-Y##
Brutin, D., Ajaev, V. S., & Tadrist, L. (2013). Pressure drop and void fraction during flow boiling in rectangular minichannels in weightlessness. Applied Thermal Engineering, 51, 1317-1327. https://doi.org/10.1016/j.applthermaleng.2012.11.017##
Chai, L., Xia, G., Wang, L., Zhou, M., & Cui, Z. (2013), Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections. International Journal of Heat and Mass Transfer, 62, 741-751. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.045##
Chang, W., Zhang, S. S., Tian, S., & Huo, M. J. (2011). Research on the flow boiling and heat transfer of ethanol in a corrugated mini-channel. Applied Mechanics and Materials, 66–68. https://doi.org/10.4028/www.scientific.net/AMM.66-68.876.##
Chen, A., Lin, T. F., Ali, H. M., & Yan, W. M. (2020). Experimental study on bubble characteristics of time periodic subcooled flow boiling in annular ducts due to wall heat flux oscillation. International Journal of Heat and Mass Transfer, 157, 119974. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119974##
Chen, C. A., Li, K. W., Lin, T. F., Li, W. K., & Yan, W. M. (2021). Study on heat transfer and bubble behavior inside horizontal annuli: Experimental comparison of R-134a, R–407C, and R-410A subcooled flow boiling. Case Studies in Thermal Engineering, 24, 100875. https://doi.org/10.1016/j.csite.2021.100875##
Gao, W., Xu, X., & Liang, X. (2017). Experimental study on the effect of orientation on flow boiling using R134a in a mini-channel evaporator. Applied Thermal Engineering, 121, 963-973. https://doi.org/10.1016/j.applthermaleng.2017.04.019##
Hirt, C. W., Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics,39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5##
Hożejowska, S., Kaniowski, R. M., & Poniewski, M. E. (2016). Experimental investigations and numerical modeling of 2D temperature fields in flow boiling in minichannels. Experimental Thermal and Fluid Science, 78, 18-29. https://doi.org/10.1016/j.expthermflusci.2016.05.005##
Hsu, W. T., Lee, N., Lee, D., Kim, J., Yun, M., & Cho, H. H. (2022). Surfaces with bent micro-polymerized pillars exhibit enhanced heat transfer during subcooled flow boiling. International Journal of Heat and Mass Transfer, 182, 121941. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121941##
Huang, P., & Pan, M. (2021). Secondary heat transfer enhancement design of variable cross-section microchannels based on entrancy analysis. Renewable and Sustainable Energy Reviews, 141, 110834. https://doi.org/10.1016/j.rser.2021.110834##
Huang, P. G. D., Zhong, X., & Pan, M. (2020). Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section. Chemical Engineering and Processing - Process Intensification, 147, 107769. https://doi.org/10.1016/j.cep.2019.107769##
Iceri, D. M., Zummo, G., Saraceno, L., & Ribatski, G. (2020). Convective boiling heat transfer under microgravity and hypergravity conditions. International Journal of Heat and Mass Transfer, 119614. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119 614##
Igaadi, A., El Mghari, H., & El Amraoui, R. (2023). Numerical investigation into the effects of orientation on ‎Subcooled Flow Boiling Characteristics. Journal of Applied and Computational Mechanics. https://doi.org/10.22055/JACM.2022.41723.3802##
Kandlikar, S. G. (2012). History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: A critical review. ASME Journal of Heat and Mass Transfer, 134(3), 034001. https://doi.org/10.1115/1.4005126##
Kennedy, J. E., Roach Jr, G. M., Dowling, M. F., Abdel-Khalik, S. I., Ghiaasiaan, S. M., Jeter, S. M., & Quershi, Z. H. (2000), The onset of flow instability in uniformly heated horizontal microchannels. Journal of Heat and Mass Transfer, 122(1), 118-125. https://doi.org/10.1115/1.521442##
Kim, S. J., McKrell, T., Buongiorno, J., & Hu, L. (2010). Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nuclear Engineering and Design, 240, 1186-1194. https://doi.org/10.1016/j.nucengdes.2010.01.020##
Lebon, M. T., Hammer, C. F., & Kim, J. (2019). Gravity effects on subcooled flow boiling heat transfer. International Journal of Heat and Mass Transfer, 128, 700-714. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.011##
Lee, J., O'Neill, L. E., Lee, S., & Mudawar, I. (2019). Experimental and computational investigation on two-phase flow and heat transfer of highly subcooled flow boiling in vertical upflow. International Journal of Heat and Mass Transfer, 136, 1199-1216. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.046##
Lee, S. W., Kim, K. M., & Bang, I. C. (2013). Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid. International Journal of Heat and Mass Transfer, 65, 348-356. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.013##
Lee, W. H. (1980). Pressure iteration scheme for two-phase flow modeling. Multiphase Transport: Fundamentals, Reactor Safety, Applications, 407-432.##
Li, Y., Xia, G., Jia, Y., Cheng, Y., & Wang, J. (2017). Experimental investigation of flow boiling performance in microchannels with and without triangular cavities–A comparative study. International Journal of Heat and Mass Transfer, 108, 1511-1526.##
Li, Y. F., Xia, G. D., Ma, D. D., Yang, J. L., & Li, W. (2020). Experimental investigation of flow boiling characteristics in microchannel with triangular cavities and rectangular fins. International Journal of Heat and Mass Transfer, 148, 119036.##
Liu, Z., Bi, Q., Guo, Y., & Su, Q. (2012). Heat transfer characteristics during subcooled flow boiling of a kerosene kind hydrocarbon fuel in a 1mm diameter channel. International Journal of Heat and Mass Transfer, 55, 4987-4995. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.039##
Liu, Z., & Bi, Q. (2015). Onset and departure of flow boiling heat transfer characteristics of cyclohexane in a horizontal minichannel. International Journal of Heat and Mass Transfer, 88, 398-405. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.088##
Manda, U., Peles, Y., & Putnam, S. (2021). Comparison of heat transfer characteristics of flow of supercritical carbon dioxide and water inside a square microchannel. 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm), 1207-1213. https://doi.org/10.1109/ITherm51669.2021.9503192##
Manda, U., Parahovnik, A., & Peles, Y. (2022). Thermoacoustic waves and piston effect inside a microchannel with carbon dioxide near critical conditions. Thermal Science and Engineering Progress, 36, 101528. https://doi.org/10.1016/j.tsep.2022.101528##
Manda, U., Parahovnik, A., & Peles, Y. (2020). Theoretical investigation of boundary layer behavior and heat transfer of supercritical carbon dioxide (Sco2) in a microchannel. Itherm-2020 conference, Orlando, FL, USA, 888-892. https://doi.org/10.1109/ITherm45881.2020.9190408##
Markal, B., Candan, A., Aydin, O., & Avci, M. (2018a). Experimental investigation of flow boiling in single minichannels with low mass velocities. International Communications in Heat and Mass Transfer, 98, 22-30. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.002##
Markal, B., Candan, A., Aydin, O., & Avci, M. (2018b). Critical heat flux at flow boiling of refrigerants in minichannels at high reduced pressure. International Journal of Heat and Mass Transfer, 122, 732-739. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.027##
McGlen, R. J., Jachuck, R., & Lin, S. (2004). Integrated thermal management techniques for high power electronic devices. Applied Thermal Engineering, 24 (8–9), 1143-1156. https://doi.org/10.1016/j.applthermaleng.2003.12.029##
Nedaei, M., Motezakker, A. R., Zeybek, M. C., Sezen, M., Ozaydin, I. G., & Kosar, A. (2017). Subcooled flow boiling heat transfer enhancement using polyperfluorodecylacrylate (pPFDA) coated microtubes with different coating thicknesses. Experimental Thermal and Fluid Science, 86, 130-140. https://doi.org/10.1016/j.expthermflusci.2017.04.008##
Parahovnik, A., & Peles, Y. (2022). Bubble dynamics in a subcooled flow boiling of near-critical carbon dioxide. International Journal of Heat and Mass Transfer, 183, 122191. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122191##
Parahovnik, A., Manda, U., & Peles, Y. (2022). Heat transfer mode shift to adiabatic thermalization in near-critical carbon dioxide with flow boiling in a microchannel. International Journal of Heat and Mass Transfer, 188, 122629. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122629##
Phan, H. T., Caney, N., Marty, P., Colasson, S., & Gavillet, J. (2011). Flow boiling of water in a minichannel: The effects of surface wettability on two-phase pressure drop. Applied Thermal Engineering, 31, 1894-1905. https://doi.org/10.1016/j.applthermaleng.2011.02.036##
Piasecka, M., & Strąk, K. (2019). Influence of the surface enhancement on the flow boiling heat transfer in a minichannel. Heat Transfer Engineering, 40(13-14), 1162-1175. https://doi.org/10.1080/01457632.2018.1457264##
Piasecka, M. (2012). An application of enhanced heating surface with mini-reentrant cavities for flow boiling research in minichannels. Heat Mass Transfer. https://doi.org/10.1007/s00231-012-1082-y##
Piasecka, M. (2013). Heat transfer mechanism, pressure drop and flow patterns during FC-72 flow boiling in horizontal and vertical minichannels with enhanced walls. International Journal of Heat and Mass Transfer, 66, 472-488. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.046##
Piasecka, M. (2014). The use of enhanced surface in flow boiling heat transfer in a rectangular minichannel. Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion, 231-255. https://doi.org/10.1080/08916152.2013.782374##
Prajapati, Y. K., Pathak, M., & Khan, M. K. (2015). A comparative study of flow boiling heat transfer in three different configurations of microchannels. International Journal of Heat and Mass Transfer, 711-722. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.016##
Ramasamy, N. S., Kumar, P., Wangaskar, B., Khandekar, S., & Maydanik, Y. F. (2018), Miniature ammonia loop heat pipe for terrestrial applications: Experiments and modeling. International Journal of Thermal Sciences, 124, 263-278. https://doi.org/10.1016/j.ijthermalsci.2017.10.018##
Rena, T., Zhub, Z., Shi, J., Yana, C., & Zhanga, R. (2020). Experimental study on bubble sliding for upward subcooled flow boiling in a narrow rectangular channel. International Journal of Heat and Mass Transfer, 119489. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119489##
Şişman, Y., Khalili Sadaghiani, A., Khedir, R., Brozak, M., Karabacak, T., & Koşar, A. (2016). Subcooled flow boiling over microstructured plates in rectangular minichannels. Nanoscale and Microscale Thermophysical Engineering, 20(3-4), 173-190. https://doi.org/10.1080/15567265.2016.1248584##
Sugrue, R., Buongiorno, J., & McKrell, T. (2014). An experimental study of bubble departure diameter in subcooled flow boiling including the effects of orientation angle, subcooling, mass flux, heat flux, and pressure. Nuclear Engineering and Design, 182-188. https://doi.org/10.1016/j.nucengdes.2014.08.009##
Sun, Y., Zhang, L., Xu, H., & Zhong, X. (2011). Subcooled flow boiling heat transfer from microporous surfaces in a small channel. International Journal of Thermal Sciences, 881-889. https://doi.org/10.1016/j.ijthermalsci.2011.01.019##
Tardist, L. (2007). Review on Two-Phase Instabilities in Narrow Spaces. International Journal of Heat and Fluid Flow, 28(1), 54–62. https://doi.org/10.1016/j.ijheatfluidflow.2006.06.004##
Tiwari, N., & Moharana, M. K. (2021). Conjugate effect on flow boiling instability in wavy microchannel. International Journal of Heat and Mass Transfer, 120791. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120791##
Vasileiadou, P., Sefiane, K., Karayiannis, T. G., & Christy, J. R. E. (2017). Flow boiling of ethanol/water binary mixture in a square mini-channel. Applied Thermal Engineering, 127, 1617-1626. https://doi.org/10.1016/j.applthermaleng.2017.08.126##
Wang, Y., & Wu, J. M. (2015). Numerical simulation on single bubble behavior during Al2O3/H2O nanofluids flow boiling using Moving Particle Simi-implicit method. Progress in Nuclear Energy, 85, 130-139. https://doi.org/10.1016/j.pnucene.2015.06.017##
Zhou, G., Li, J., & Lv, L. (2016). An ultra-thin miniature loop heat pipe cooler for mobile electronics. Applied Thermal Engineering, 109 (Part A), 514-523. https://doi.org/10.1016/j.applthermaleng.2016.08.138##