Bhattacharya, S., & Ahmed, A. (2010). 
Effect of sinusoidal forcing on the wake of a circular cylinder. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics. 
https://doi.org/10.2514/6.2010-89##
                                                                                                                                                                                                                                 Bhattacharya, S., & Gregory, J. W. (2020). The effect of spatially and temporally modulated plasma actuation on cylinder wake. 
AIAA Journal, 58(9), 3808–3818. 
https://doi.org/10.2514/1.J059269##
                                                                                                                 Edwards, C., Small, W., Weidner, J., & Johnston, P. (1975). 
Studies of scramjet/airframe integration techniques for hypersonic aircraft. 13th Aerospace Sciences Meeting (Vol. 1–0). American Institute of Aeronautics and Astronautics. 
https://doi.org/10.2514/6.1975-58##
                                                                                                                 Gayathri, N., Senthilkumar, P., Dineshkumar, K., Purusothaman, M., & Sriharan, B. (2022). CFD analysis on flow through nozzle of conical type and truncated conical plug type. 
Materials Today: Proceedings. 
https://doi.org/10.1016/j.matpr.2022.09.407##
                                                                                                                 Hemmati, A., & Namazian, Z. (2021). Numerical analysis of shock wave train in single-expansion ramp nozzle under harmonic inlet and outlet conditions. 
Chemical Engineering Communications, 1–10. 
Https://Doi.Org/10.1080/00986445.2021.2007091##
                                                                                                                 Huang, S., Xu, J., Yu, K., Wang, Y., Pan, R., Chen, K., & Zhang, Y. (2022). Numerical study of a trapezoidal bypass dual throat nozzle. 
Chinese Journal of Aeronautics. 
https://doi.org/10.1016/j.cja.2022.11.015##
                                                                                                                 Huang, W., Wang, Z., Ingham, D. B., Ma, L., & Pourkashanian, M. (2013). Design exploration for a single expansion ramp nozzle (SERN) using data mining. 
Acta Astronautica, 83, 10–17. 
https://doi.org/10.1016/j.actaastro.2012.09.016##
                                                                                                                                                                                                                                 John, B., & Vivekkumar, P. (2020). A Numerical investigation on the equivalence of shock−wave/ boundary-layer interactions using a two equations RANS model. 
Journal of Applied Fluid Mechanics, 14(3), 753–767. 
https://doi.org/10.47176/jafm.14.03.31722##
                                                                                                                                                                                                                                 Kurganov, A., & Tadmor, E. (2000). New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. 
Journal of Computational Physics, 160(1), 241–282. 
https://doi.org/10.1006/jcph.2000.6459##
                                                                                                                 Kurganov, A., Guergana, A., & Siam, P. (2000). Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton—Jacobi equations. 
SIAM Journal on Scientific Computing, 23, 707–740. 
https://doi.org/10.1137/S1064827500373413##
                                                                                                                 Lederer, R., & Krueger, W. (1993). 
Nozzle development as a key element for hypersonics. 5th International Aerospace Planes and Hypersonics Technologies Conference. American Institute of Aeronautics and Astronautics. 
https://doi.org/10.2514/6.1993-5058##
                                                                                                                 Li, Z., Leng, J., Abu-Hamdeh, N. H., Abusorrah, A. M., & Musa, A. (2022). Effects of nozzle types on mass diffusion mechanism of hydrogen multi-jets at supersonic combustion chamber. 
International Communications in Heat and Mass Transfer, 139, 106509. 
https://doi.org/10.1016/j.icheatmasstransfer.2022.106509##
                                                                                                                 Liu, X. Y., Cheng, M., Zhang, Y. Z., & Wang, J. P. (2022). Design and optimization of aerospike nozzle for rotating detonation engine. 
Aerospace Science and Technology, 120, 107300. 
https://doi.org/10.1016/j.ast.2021.107300##
                                                                                                                 Mirjalily, S. A. A. (2023). Calibration of the k-ω shear stress transport turbulence model for shock wave boundary layer interaction in a SERN using machine learning. 
Engineering Analysis with Boundary Elements, 146, 96–104. 
https://doi.org/10.1016/j.enganabound.2022.10.009##
                                                                                                                                                                                                                                 Nair, P. P., Narayanan, V., Suryan, A., & Kim, H. D. (2022). Prediction and visualization of supersonic nozzle flows using OpenFOAM. 
Journal of Visualization, 25(6), 1227–1247. 
https://doi.org/10.1007/s12650-022-00856-5##
                                                                                                                 Nave, L., & Coffey, G. (1973). 
Sea level side loads in high-area-ratio rocket engines. 9th Propulsion Conference. American Institute of Aeronautics and Astronautics. 
https://doi.org/10.2514/6.1973-1284##
                                                                                                                 Pathan, K. A., Dabeer, P. S., & Khan, S. A. (2019). Effect of nozzle pressure ratio and control jets location to control base pressure in suddenly expanded flows. 
Journal of Applied Fluid Mechanics, 12(4), 1127–1135. 
https://doi.org/10.29252/jafm.12.04.29495##
                                                                                                                 Rakhsha, S., Rajabi Zargarabadi, M., & Saedodin, S. (2023). The effect of nozzle geometry on the flow and heat transfer of pulsed impinging jet on the concave surface. 
International Journal of Thermal Sciences, 184, 107925. 
https://doi.org/10.1016/j.ijthermalsci.2022.107925##
                                                                                                                 Salimi, M. R., Askari, R., & Hasani, M. (2022). Computational investigation of effects of side-injection geometry on thrust-vectoring performance in a fuel-injected dual throat nozzle. 
Journal of Applied Fluid Mechanics, 
15(4), 1137–1153. 
https://doi.org/10.47176/jafm.15.04.33354##
                                                                                                                 Shyji, S., Deepu, M., Kumar, N. A., & Jayachandran, T. (2017). Numerical studies on thrust augmentation in high area ratio rocket nozzles by secondary injection. 
Journal of Applied Fluid Mechanics, 10(6), 1605–1614. 
https://doi.org/10.29252/jafm.73.245.27309##
                                                                                                                 Yaravintelimath, A., B. N., R., & A. Moríñigo, J. (2016). Numerical prediction of nozzle flow separation: Issue of turbulence modeling. 
Aerospace Science and Technology, 50, 31–43. 
https://doi.org/10.1016/j.ast.2015.12.016##
                                                                                                                                                                                                                                 Yu, Y. (2020). Over-expanded separation transitions of single expansion ramp nozzle in the accelerating and decelerating processes. 
Aerospace Science and Technology, 98, 105674. 
https://doi.org/10.1016/j.ast.2019.105674##
                                                                                                                 Yu, Y., Xu, J., Mo, J., & Wang, M. (2014a). Numerical investigation of separation pattern and separation pattern transition in overexpanded single expansion ramp nozzle. 
The Aeronautical Journal, 118(1202), 399–424. Cambridge Core. 
https://doi.org/10.1017/S0001924000009192##
                                                                                                                 Yu, y., xu, j., mo, j., & wang, m. (2014b). Principal parameters in flow separation patterns of over-expanded single expansion RAMP nozzle. 
Engineering Applications of Computational Fluid Mechanics, 
8(2), 274–288. 
https://doi.org/10.1080/19942060.2014.11015513##
                                                                                                                                                                                                                                 Zang, B., U S, V., & New, T. H. D. (2017). 
OpenFOAM based numerical simulation study of an underexpanded supersonic jet. 55th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics. 
https://doi.org/10.2514/6.2017-0747##
                                                                                                                 Zhou, L., & Wang, Z. (2019). Numerical investigation on the three-dimensional flowfield in the single expansion ramp nozzle with passive cavity flow control. 
Journal of Applied Fluid Mechanics, 12(4), 1115–1126. 
https://doi.org/10.29252/jafm.12.04.29320##