Fluid Flow and Effect of Turbulence Model on Large-Sized Triple-Offset Butterfly Valve

Document Type : Regular Article


1 Korea Railroad Research Institute, Metropolitan Transportation Research Center, Uiwang-si, Gyeonggi-do, Republic of Korea

2 DH Controls Co., Ltd., Research Institute, Gangseo-gu, Busan, Republic of Korea

3 Gyeongsang National University, Department of Mechanical System Engineering, Tongyeong-si, Gyeongsangnam-do, Republic of Korea



The performance a valve has been frequently estimated with numerical methods owing to limitations such as cost and place. In this study, for the triple-offset butterfly valves, the different sizes in various disc-opening cases was numerically conducted using different turbulence models of the two-equation turbulence models of k–ε, k-ω, and Reynolds stress model. The numerical calculations were validated against experimentally obtained valve flow test results. The numerical effect with the different turbulence models were analyzed with respect to the disc-opening cases. From the numerical analysis, the Reynolds stress model exhibits the most pronounced turbulence effects among the various turbulence models showing higher value of Reynolds normal stress near the valve disc region. The sensitivity of the turbulence model constants was examined using the 300 mm valve to observe the sensitivity of the turbulence model parameters in the two-equation turbulence models. 


Main Subjects

Ansys, Inc. "CFX Solver Modelling Guide, Release 15.0." ANSYS CFX-Solver Modeling Guide 15317.November (2013): 724-46. https://www.kth.se/polopoly_fs/1.332104.1600689183!/rn_r15.pdf
Bardina, J. E., Huang, P. G., & Coakley, T. J. (1997). Turbulence modeling validation, testing, and development. No. A-976276.
Benton, J., Kalitzin, G., & Gould, A. (1996). Application of two-equation turbulence models in aircraft design. 34th Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.1996-327
Błazik‐Borowa, E. (2008). The analysis of the channel flow sensitivity to the parameters of the k–ε method. International Journal for Numerical Methods in Fluids, 58, 1257-1286. https://doi.org/10.1002/fld.1808
Błazik-Borowa, E. (2012). The application example of the sensitivity analysis of the solution to coefficients of the k-ε model. Budownictwo i Architektura, 10, 53-68. https://doi.org/10.35784/bud-arch.2230
Bottema, M. (1997). Turbulence closure model “constants” and the problems of “inactive” atmospheric turbulence. Journal of Wind Engineering and Industrial Aerodynamics, 67, 897-908. https://doi.org/10.1016/S0167-6105(97)00127-X
Chen, Y. S., & Kim, S. W. (1987). Computation of turbulent flows using an extended k-epsilon turbulence closure model. No. NAS 1.26, 179204.
Choi, S. W., & Kim, H. S. (2020). Predicting turbulent flows in butterfly valves with the nonlinear eddy viscosity and explicit algebraic Reynolds stress models. Physics of Fluids, 32, 085105. https://doi.org/10.1063/5.0006896
Choi, S. W., Seo, H. S., & Kim, H. S. (2021). Analysis of flow characteristics and effects of turbulence models for the butterfly valve. Applied Sciences, 11, 6319. https://doi.org/10.3390/app11146319
Colin, E., Etienne, S., Pelletier, D., & Borggaard, J. (2005). Application of a sensitivity equation method to turbulent flows with heat transfer. International Journal of Thermal Sciences, 44, 1024-1038. https://doi.org/10.1016/j.ijthermalsci.2005.04.002
Comte-Bellot, G., & Corrsin, S. (1966). The use of a contraction to improve the isotropy of grid-generated turbulence. Journal of Fluid Mechanics, 25, 657-682. https://doi.org/10.1017/S0022112066000338
Del Toro, A., M. C. Johnson, & R. E. Spall (2015). Computational fluid dynamics investigation of butterfly valve performance factors. Journal-American Water Works Association, 107.5, E243-E254. https://doi.org/10.5942/jawwa.2015.107.0052
Du, X., & Gao, S. (2013). Numerical study of complex turbulent flow through valves in a steam turbine system. International Journal of Materials, Mechanics and Manufacturing, 1, 301-305. https://doi.org/10.7763/IJMMM.2013.V1.65
Henderson, A. D., Sargison, J. E., Walker, G. J., & Haynes, J. (2008). A numerical prediction of the hydrodynamic torque acting on a safety butterfly valve in a hydro-electric power scheme. WSEAS Transactions on Fluid Mechanics, 1, 218. http://www.wseas.us/e-library/transactions/fluid/2008/MGR-03.pdf
Hrenya, C. M., Bolio, E. J., Chakrabarti, D., & Sinclair, J. L. (1995). Comparison of low Reynolds number k− ε turbulence models in predicting fully developed pipe flow. Chemical Engineering Science, 50, 1923-1941. https://doi.org/10.1016/0009-2509(95)00035-4
Huang, C., & Kim, R. H. (1996). Three-dimensional analysis of partially open butterfly valve flows. https://doi.org/10.1115/1.2817795
ISA (2007a). Standard, control valve capacity test procedures. ISA-S75; The International Society of Automation: Research Triangle Park, NC, USA. https://webstore.ansi.org/preview-pages/ISA/preview_ANSI+ISA+75.02.01-2008.pdf
ISA (2007b). Standard, Flow Equations for Sizing Control Valves. ISA-S75; The International Society of Automation: Research Triangle Park, NC, USA. http://integrated.cc/cse/ISA_750101_SPBd.pdf
Jones, W. P., & Launder, B. E. (1972). The prediction of laminarization with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 15, 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
Kok, J. C. (2000). Resolving the dependence on freestream values for the k-turbulence model. AIAA Journal, 38, 1292-1295. https://doi.org/10.2514/2.1101
Launder, B. E., & Sharma, B. I. (1974). Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters In Heat and Mass Transfer, 1, 131-137. https://doi.org/10.1016/0094-4548(74)90150-7
Launder, B. E., & Spalding, D. B. (1972). Lectures in mathematical models of turbulence.
Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
Lin, C. H., Yen, C. H., & Ferng, Y. M. (2014). CFD investigating the flow characteristics in a triangular-pitch rod bundle using Reynolds stress turbulence model. Annals of Nuclear Energy, 65, 357-364. https://doi.org/10.1016/j.anucene.2013.11.023
Lisowski, E., & Filo, G. (2017). Analysis of a proportional control valve flow coefficient with the usage of a CFD method. Flow Measurement and Instrumentation, 53, 269-278. https://doi.org/10.1016/0019-0578(95)00023-2
Lisowski, E., & Rajda, J. (2013). CFD analysis of pressure loss during flow by hydraulic directional control valve constructed from logic valves. Energy Conversion and Management, 65, 285-291. https://doi.org/10.1016/j.enconman.2012.08.015
Nesbitt, B. (2011). Handbook of valves and actuators: valves manual international. Elsevier. https://doi.org/10.1016/B978-1-85617-494-7.X5027-5
Ogawa, K., & Kimura, T. (1995). Hydrodynamic characteristics of a butterfly valve—prediction of torque characteristics. ISA Transactions, 34, 327-333.
Park, J. Y., & M. K. Chung (2006). Study on hydrodynamic torque of a butterfly valve. 190-195. https://doi.org/10.1115/1.2137348
Patel, Y. (2010). Numerical investigation of flow past a circular cylinder and in a staggered tube bundle using various turbulence models. https://doi.org/10.1088/1757-899X/383/1/012050
Prieler, R., Demuth, M., Spoljaric, D., & Hochenauer, C. (2015). Numerical investigation of the steady flamelet approach under different combustion environments. Fuel, 140, 731-743. https://doi.org/10.1016/j.fuel.2014.10.006
Said, M. M., AbdelMeguid, H. S., & Rabie, L. H. (2016). The accuracy degree of CFD turbulence models for butterfly valve flow coefficient prediction. American Journal of Industrial Engineering, 4, 14-20. https://doi.org/10.12691/ajie-4-1-3
Sarkar, A., & So, R. M. C. (1997). A critical evaluation of near-wall two-equation models against direct numerical simulation data. International Journal of Heat and Fluid Flow, 18, 197-208. https://doi.org/10.1016/S0142-727X(96)00088-4
Sarkar, T., Sayer, P. G., & Fraser, S. M. (1997). Flow simulation past axisymmetric bodies using four different turbulence models. Applied Mathematical Modelling, 21, 783-792. https://doi.org/10.1016/S0307-904X(97)00102-9
Shih, T. H. (1990). An improved k-epsilon model for near-wall turbulence and comparison with direct numerical simulation. No. NAS 1.15, 103221.
Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24, 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
Srikanth, C., & Bhasker, C. (2009). Flow analysis in valve with moving grids through CFD techniques. Advances in Engineering Software, 40, 193-201. https://doi.org/10.1016/j.advengsoft.2008.04.003
Sun, X., Kim, H. S., Yang, S. D., Kim, C. K., & Yoon, J. Y. (2017). Numerical investigation of the effect of surface roughness on the flow coefficient of an eccentric butterfly valve. Journal of Mechanical Science and Technology, 31, 2839-2848. https://doi.org/10.1007/s12206-017-0527-0
Wang, P., & Liu, Y. (2017). Unsteady flow behavior of a steam turbine control valve in the choked condition: Field measurement, detached eddy simulation and acoustic modal analysis. Applied Thermal Engineering, 117, 725-739. https://doi.org/10.1016/j.applthermaleng.2017.02.087
Wilcox, D. C. (1998). Turbulence modeling for CFD. La Canada, CA: DCW industries. https://doi.org/10.1017/S0022112095211388
Wilcox, D. C. (2008). Formulation of the kw turbulence model revisited. AIAA Journal, 46(11), 2823-2838. https://doi.org/10.2514/1.36541
Williams, S., Trembley, J., & Miller, J. P. Flow Monitoring using flow control device. U.S. Patent No. 7,092,797, 15 August 2006.
Wu, D., Li, S., & Wu, P. (2015). CFD simulation of flow-pressure characteristics of a pressure control valve for automotive fuel supply system. Energy Conversion and Management, 101, 658-665. https://doi.org/10.1016/j.enconman.2015.06.025
Zeng, L., Liu, G., Mao, J., Yuan, Q., Wang, S., Wei, L., & Wang, Z. (2015). A novel numerical simulation method to verify turbulence models for predicting flow patterns in control valves. Journal of Fluid Science and Technology, 10, JFST0007-JFST0007. https://doi.org/10.1299/jfst.2015jfst0007