Inelastic Solution for Power Law Fluid with Taylor Galerkin-Pressure Correction Finite Element Method: Axisymmetric Contraction Flows

Document Type : Regular Article


Department of Mathematics, College of Science, University of Basrah1, Basrah, 61004, Iraq



In this study we examine the flow of inelastic fluids with various shear properties in axisymmetric contractions with various contraction ratios are selected as 4:1, 6:1 and 8:1 with both rounded-corner and sharp. Particular attention is paid to the effect of shear thickening and shear thinning  upon the solution behavior. Power-law inelastic model is employed coupling with the conservation of momentum equation and continuity equation. The numerical simulation of such fluid is performed by using the Taylor Galerkin pressure correction (T-G/P-C) finite element algorithm.  The effects of geometry structure and many factors such as Reynolds number (Re) and the parameters of power law model are presented in this study. Particularly, in this study we are focused on the influence of these factors on the solution components and the level of convergence. This research was a comparative study between sharp and rounded-corner contraction geometries with a ratio of 4:1, and to another comparative study among sharp contraction geometries with ratios of 4:1, 6:1, and 8:1. The practical implications of this study focused on vortex length and the impact of varying the parameters of the power law model and the Reynolds number (Re) on it for 4:1 contraction flow.  The study dealt with the effect of different geometries on the rates of convergence of velocity and pressure as well as the characteristics of axial velocity and pressure on the axis of symmetry.


Main Subjects

Aboubacar, M., Matallah, H., Tamaddon-Jahromi, H. R., & Webster, M. F. (2002). Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method. Journal of Non-Newtonian Fluid Mechanics, 104(2-3), 125-164.‏
Agelinchaab, M., & Tachie, M. F. (2006). Open channel turbulent flow over hemispherical ribs. International Journal of Heat and Fluid Flow, 27(6), 1010-1027.‏
Alves, M. A., Pinho, F., & Oliveira, P. J. (2005). Visualizations of boger fluid flows in a 4: 1 square–square contraction. AIChE Journal, 51(11), 2908-2922.‏
Alzahrani, F., Hobiny, A., Abbas, I., & Marin, M. (2020). An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry, 12(5), 848.‏
Ameur, H. (2018). Pressure drop and vortex size of power law fluids flow in branching channels with sudden expansion. Journal of Applied Fluid Mechanics, 11(6), 1739-1749.‏
Belblidia, F., Keshtiban, I. J., & Webster, M. F. (2003). Novel schemes for steady weakly compressible and incompressible flow s. ACME-UK Conference, University of Strathclyde, Glasgow, UK.‏
Bharti, Ram Prakash, Ram Pravesh Ram, Amit Kumar Dhiman. (2022). Computational analysis of cross‐ flow of power‐law fluids through a periodic square array of circular cylinders. Asia‐Pacific Journal Chemical Engineering, 17.2 e2748.
Blanco, M., Battiato, J., & Disotell, K. J. (2019). Sensitivity study of contraction flow for boundary-layer validation wind tunnel. AIAA Aviation 2019 Forum (p. 3095(.
Boyd, J., Buick, J. M., Green, S. (2007). Analysis of the casson and carreau-yasuda non-newtonian blood models in steady and oscillatory flows using the lattice boltzmann method. Journal of Physics in Fluids,  19(9), 093103.
Carer, C., Driever, L. X., Köbben, S., Mckenzie, M., Rhenman, F., Sype, O. V. D., & Jyoti, B. V.S. (2021). Effect of parameter variation on the viscosity of ethanol gel propellants. Journal Aerosol Technology Managment. 13.
Crank, J., & Nicolson, P. (1996). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Advances in Computational Mathematics, 6(1), 207-226.‏
Hawken, D. M., Tamaddon‐Jahromi, H. R., Townsend, P., & Webster, M. F. (1990). Galerkin based algorithm for viscous incompressible flow. International Jornal for Numerical Methods in Fluids, 10 (1990), 327-351.
Fadhel, I. A., & Al-Muslimawi, A. H. (2020). Simulation of Newtonian axisymmetric pipe flow by using a Taylor Galerkin/pressure correction finite element method. Basrah Journal of Science, 38(2), 198-222.‏
Ferrás, L. L., Afonso, A. M., Alves, M. A., Nóbrega, J. M., Carneiro, O. S., & Pinho, F. T. (2014). Slip flows of Newtonian and viscoelastic fluids in a 4: 1 contraction. Journal of Non-Newtonian Fluid Mechanics, 214, 28-37.
Galdi, G. (2011). An introduction to the mathematical theory of the Navier-Stokes equations: Steady-state problems. Springer Science & Business Media.‏
Graham, D. I., & Jones, T. E. R. (1994). Settling and transport of spherical particles in power-law fluids at finite Reynolds number. Journal of Non-Newtonian Fluid Mechanics, 54, 465-488.‏
Haward, S. J., Li, Z., Lighter, D., Thomas, B., Odell, J. A., & Yuan, X. F. (2010). Flow of dilute to semi-dilute polystyrene solutions through a benchmark 8: 1 planar abrupt micro-contraction. Journal of Non-Newtonian Fluid Mechanics, 165(23-24), 1654-1669.‏
Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285, 69-94.‏
Karimi, S., Dabagh, M., Vasava, P., Dadvar, M., Dabir, B., Jalali, P. (2014). Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. Journal of Non-Newtonian Fluid Mechanics, 207, 42-52.
Karlson, M., Nita, B. G., & Vaidya, A. (2020). Numerical computations of vortex formation length in flow past an elliptical cylinder. Fluids, 5(3), 157.
Lanzaro, A., & Yuan, X. F. (2011). Effects of contraction ratio on non-linear dynamics of semi-dilute, highly polydisperse PAAm solutions in microfluidics. Journal of Non-Newtonian Fluid Mechanics, 166(17-18), 1064-1075.‏
Liepsch, D., Sindeev, S., & Frolov, S. (2018, August). An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm. Inernational Journal of Physics: Conference Series, IOP Publishing.
López-Aguilar, J. E., Webster, M. F., Al-Muslimawi, A. H. A., Tamaddon-Jahromi, H. R., Williams, R., Hawkins, K., & Lewis, K. (2015). A computational extensional rheology study of two biofluid systems. Rheologica Acta, 54(4), 287-305.‏
Mahmood, R., Majeed, A. H., Tahir, M., Saddique, I., Hamadneh, N. N., Khan, I., Mehmood, A. (2022). Statistical analysis of hydrodynamic forces in power-law fluid flow in achannel: circular versus semi-circular cylinder. Journal Frontiers in Physics, 38.
Patil, H., & Jeyakarthikeyan, P. V. (2018, August). Mesh convergence study and estimation of discretization error of hub in clutch disc with integration of ANSYS. IOP Conference Series: Materials Science and Engineering, IOP. Publishing.
Reddy, J. N. (2019). Introduction to the finite element method. McGraw-Hill Education.‏
Şahin, B., Ward-Smith, A. J., & Lane, D. (1995). The pressure drop and flow characteristics of wide-angle screened diffusers of large area ratio. Journal of Wind Engineering and Industrial Aerodynamics, 58(1-2), 33-50.
Schäfle, C., & Kautz, C. (2019). Students reasoning in fluid dynamics: Bernoulli's principle vs. the continuity equation. Proceedings of the 10th International Conference on Physics Teaching in Engineering Education
Sharhanl, A. A., & Al-Muslimawi, A. (2021). Numerical simulation of a power-law inelastic fluid in axisymmetric contraction by using a Taylor Galerkin-pressure correction finite element method. International Journal of Nonlinear Analysis and Applications, 12, 2211- 2222.‏
Sousa, P. C., Coelho, P. M., Oliveira, M. S. N., & Alves, M. A. (2011). Effect of the contraction ratio upon viscoelastic fluid flow in three-dimensional square–square contractions. Chemical Engineering Science, 66(5), 998-1009.‏
Tanner, R. I. (2000). Engineering rheology.OUP Oxford.‏
Thohura, S., Molla, M. M., & Sarker, M. M. A. (2019). Numerical simulation of non-Newtonian power-law fluid flow in a lid-driven skewed cavity. International Journal of Applied and Computational Mathematics, 5, 1-29.‏
Thorne, K. S., & Blandford, R. D. (2017). Modern classical physics: optics, fluids, plasmas, elasticity, relativity, and statistical physics. Princeton University Press.‏
Walker, J., Halliday, D., & Resnick, R. (2011). Principles of Physics. Hoboken, NJ: Wiley.‏
Yasir, R. Y., Al-Muslimawi, A. H., Jassim, B. K. (2020). Numerical simulation of non-Newtonian inelastic flows in channel based on artificial compressibility method. Journal of Applied Computional Mechancs, 6(2), 271-283.