Effect of Different Types of External Guide Vanes on the Performance of High-Pressure Centrifugal Compressor

Document Type : Regular Article

Authors

Indian Institute of Technology Madras, Madras, Tamil Nadu, 600036, India

10.47176/jafm.16.12.1814

Abstract

In order to reduce exit swirl and obtain the desired Mach number, axial exit guide vanes (EGV) are often employed in a centrifugal compressor. NASA CC3 compressor, with wedge vane diffuser and without EGV, is considered as the base model for the analysis and validation. An axial flow domain with exit guide vane is added to this base model after the diffuser outlet to study the effect on the compressor performance. The performance of exit guide vane with different profiles: flat plate, symmetric wedge, circular arc, and airfoil vane profiles by maintaining the same chord, number of vanes, and flow angle of the vanes are studied. Numerical simulations are carried out with 60 number of exit guide vanes for all four types of vanes. Among several combinations, when the centrifugal compressor is equipped with 60 circular arc vanes as EGV, the efficiency and pressure recovery values at the design point have increased by 6.5% and 8.9%, respectively.

Keywords

Main Subjects


Ali, Z., Lee, B. J. & Chung J. T. (2017). Numerical evaluation of transient flow characteristics in a transonic centrifugal compressor with vaned diffuser. Aerospace Science and Technology, 70, 244-256. https://doi.org/10.1016/j.ast.2017.08.003
Benini, E., Toffolo, A. & Lazzaretto A. (2006). Experimental and numerical analyses to enhance the performance of a microturbine diffuser. Experimental Thermal and Fluid Science, 30 (5), 427-440. https://doi.org/10.1016/j.expthermflusci.2005.09.003
Eynon, P. A., & Whitfield, A. (1997). The effect of low-solidity vaned diffusers on the performance of a Turbocharger compressor. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(5), 325–339. https://doi.org/10.1243/0954406971522088
Gaetani, P., Persico, G., Mora, A., Dossena, V., & Osnaghi, C. (2012). Impeller-Vaned diffuser interaction in a centrifugak compressor at off design conditions. ASME Journal of Turbomachinery, 134/061034, 1-9. https://doi.org/10.1115/GT2011-46234
Holweg, W. C., Direnzi, G. L., & Aungier, R. H. (1993). Comparison of conventional and low solidity vaned diffusers. ASME, 93-GT-98. https://doi.org/10.1115/93-GT-098
Huang, J. M., & Tsai, Y. H. (2014, January). Design and analysis of a split deswirl vane in a two-stage refrigeration centrifugal compressor. Advances in Mechanical Engineering. https://doi.org/10.1155/2014/130925
Inoue, M., & Cumpsty, N. A. (1984). Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers. Journal of Engineering for Gas Turbines and Power, 106/455-467. https://doi.org/10.1115/1.3239588
Jiang, N., William, L., Michael, Mc., Yao, R., & Haiyun, Z. (2020). On the foundations of eddy viscosity models of turbulence. Fluids, 2311-552, https://doi.org/10.3390/fluids5040167.
Jongsik, O., Buckley, C. W., & Agarwal Gril, L. (2008). Numerical investigation of low solidity vaned diffuser performance in a high-pressure centrifugal compressor, Part II: Influence of vane stagger. Proc. of ASME Turbo Expo, Berlin, Germany, GT2008-501178. https://doi.org/10.1115/gt2008-50178
Karrabi, H., Pourfarzaneh, H., & Hajilouy-Benisi. (2011, November 11–17). Zero D and 3D analysis of the centrifugal compressor of a gas turbine and its evaluation using experimental results. Proc of ASME International Mechanical Engineering Congress and Exposition, Colorado, USA.
Kim, Y., Engeda, A., Aungier, R., & Amineni, N. (2002). A centrifugal compressor stage with wide flow range vaned diffusers and different inlet configurations. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 216, 307-320. https://doi.org/10.1243/09576500260251156
Krain, H. (1981). A study on centrifugal impeller and diffuser flow. ASME Journal of Engineering for Power, 103, 688-697. https://doi.org/10.1115/1.3230791
Lurie, E. A., Slooten, P. R. V., Medic, G., Mulugeta, J. M., Holley, B. M., Feng, J., and Sharma, O. (2011). Design of a high efficiency compact centrifugal compressor for rotorcraft applications. American Helicopter Society 67th Annual Forum, Virginia Beach, USA.
Marsan, A., Isabelle, T., Sylvain, C., & Leroy, G. (2012). Study and control of a radial vaned diffuser stall. International Journal of Rotating Machinery, https://doi.org/10.1155/2012/549048
McKain, T. F., & Holbrook, G. J. (1997, July). Coordinates for a High Performance 4:1 Pressure Ratio Compressor," NASA CR-204134.
Medic, G., Sharma, O., Jongwook, J., Hardin, L. W., McCormick, D. C., Cousins, W. T., Lurie, E. A., Shabbir, A., Holley, B. M., & Van Slooten, P. R. (2014, November). High efficiency centrifugal compressor for rotorcraft applications. NASA/CR—2014-218114.
Naresh, K., & Engeda, A. A. (1997). Pressure recovery in low solidity vaned diffuser for centrifugal compressors. https://doi.org/10.1115/97-GT-472.
Shum, Y. K. P., Tan, C. S., & Cumpsty, N. A. (2000). Impeller-diffuser interaction in a centrifugal compressor. ASME Journal of Turbomachinery, 122(4), 777–786. https://doi.org/10.1115/1.1308570
Shumal, M. A., M. Nili-Ahamadabadi, & E. Shirani. (2016). Quasi-3d inverse design of a vaned 90-degree bent diffuser for the Exit of a centrifugal compressor impeller. Proc of ASME Turbo Expo, Seoul, South Korea, GT2016-57881
Yoshinaga, Y., Gyobu, I., Mishina, H., Koseki, F., & Nishida, H. (1980). Aerodynamic performance of a centrifugal compressor with vaned diffusers. ASME Journal of Fluids Engineering, 102, 486-493. https://doi.org/10.1115/1.3240730
Ziegler Kai, U., Gallus Heinz, E., & Niehuis, R. (2003). A study on impeller-diffuser interaction - part ii: detailed flow analysis. ASME Journal of Turbomachinery, 125, 183-192. https://doi.org/10.1115/1.1516815