An Analysis of the Minimum Pressure Coefficient Criterion Applied to the Axial-flow Pump Design – A Case Study for a Circulating Water Channel

Document Type : Regular Article


1 Laboratory of Fluid Dynamic and Particulate (FluidPar), Federal University of Pará, Tucuruí, Pará, 68455-901, Brazil

2 Mechanical Engineering Institute, Federal University of Itajuba, Itajuba, Minas Gerais, 37500-903, Brazil



An analysis of the minimum pressure coefficient on the suction side of the axial-flow pump blades is presented as a design criterion. A Matlab code is used to improve the computer aided design process efficiency and quality. X-Foil software determines the blade profiles' lift and drag coefficients, and a computational fluid dynamics model is applied to certify the pump efficiency. The model is validated from the available experimental data in the literature. The finite volume method is used through the commercial software Ansys CFX, in order to solve the model equations. A case study is presented to design the axial-flow pump for a large circulating water channel that will be used to test ships, naval structures, and hydrokinetic turbines. Particular attention is given to the pump cavitation conditions. The model evaluates the minimum pressure coefficient criterion and pressure coefficient distribution on the blade span, showing satisfactory performance for the pump at the design point and at variable speed.


Main Subjects

Ahn, J. W., Kim, G. D., Kim, K. S., Lee, J. T., & Seol, H. S., (2008). Development of the driving pump for the low noise large cavitation channel. Journal of the Society of Naval Architects of Korea, 45(4), 370–378.
Al-Obaidi, A. R. (2019). Investigation of fluid field analysis, characteristics of pressure drop and improvement of heat transfer in three-dimensional circular corrugated pipes. Journal of Energy Storage, 26, 101012.
Amarante Mesquita, A. L., Araújo, A. V., Pacha, R., Souza, J. M. R., & Tachibana, T. (2015). River school boat for safely transporting students in Portuguese. Proceedings of the 24th Pan-American Conference of Naval Engineering, Maritime Transport and Port Engineering, Copinaval, Montevideo, Uruguay, October.
Amarante Mesquita, A. L., Cruz, D. O. A., Serra, C. M. V., & Manzanares Filho, N. (1999). A simplified method for axial-flow turbomachinery design. Journal of the brazilian society of mechanical sciences and engineering, 21(1), 61-70.
ANSYS TurboGrid Tutorials. (2015). ANSYS TurboGrid. ANSYS, Inc. Canonsburg, PA 15317 USA.
Assi, G. R. S., Meneghini, J. R., Aranha, J. A. P., Coleto, W. G. (2005). Design, assembling and verification of a circulating Water channel facility for fluid dynamics experiments. 18th International Congress of Mechanical Engineering, Ouro Preto, MG, Brazil.
Castegnaro, S. (2018). Aerodynamic design of low-speed axial-flow fans: A historical overview. Designs, 2(3), 1–17.
Choi, J. K., Kim, H. T., Lee, C. S., & Lee, S. J. (2021). A numerical study on axial pump performance for large cavitation channel operation, Processes, 9, 1523.
Cruz, A. G. B., Amarante Mesquita, A. L., & Blanco, C. J. C. (2008). Minimum pressure coefficient criterion applied in axial-flow hydraulic turbines, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30(1), 30-38. 
Denton, J. D. (2010). Some limitations of turbomachinery CFD. ASME Turbo Expo, Glasgow, UK.
Dönmez, A. H., Yumurtacı, Z., & Kavurmacıoğlu, L. (2023). Influence of inlet vane and wrap angles on cavitation behavior of a centrifugal pump. Journal of Applied Fluid Mechanics, 16(3), 519–531.
Drela, M. (June 5-7). XFOIL: An analysis and design system for low Reynolds number airfoils. In Low Reynolds Number Aerodynamics: Proceedings of the Conference Notre Dame, Indiana, USA, Springer Berlin Heidelberg.
Fernandes, E. C. (1973). Analysis of the geometric parameter influences on the axial-flow turbomachine design, in Portuguese. [Master's thesis, Technologic Institute of Aeronautic]. São José dos Campos.
Grinberg, M., Padovezi, C. D., & Tachibana, T. (2011). Use of Small Scale Model Tests to define optimized ship shapes. XXII Copinaval – IPIN, Buenos Aires.
Gucheng, Z., Zuogang, C., & Yi, D. (2021). A numerical investigation on hydrodynamic characteristics of the circulating water channel. Ocean Engineering, 236, 109564.
Gülich J. F. (2014). Pump types and performance data. Centrifugal, 43-78.
Guo, B., Wang, D., Zhou, J., Shi, W., & Zhou, X. (2020). Performance evaluation of a submerged tidal energy device with a single mooring line. Ocean Engineering, 196, 106791.
Haghighi, M. H. S., Mirghavami, S. F., Chini, S. M., & Riasi, A. (2019). Developing a method to design and simulation of a very low head axial turbine with adjustable rotor blades, Renew Energy, 135, 266-276.
Holanda, P. S., Blanco, C. J. C., Amarante Mesquita, A. L., Brasil Junior, A. C. P., Figueiredo, N. M., Macêdo, E. N., & Secretan, Y. (2017). Assessment of hydrokinetic energy resources downstream of hydropower plants, Renew Energy, 101, 1203–14.
Hosono, K., Kajie, Y., Saito, S., & Miyagawa, K. (2015). Study on cavitation influence for pump head in an axial flow pump. Journal of Physics: Conference Series, Publishing.
Jaberg, H. (1999). Hydraulic aspects in design and operation of axial flow pumps. Institute for Hydraulic Machinery, Graz, Austria. S.
Martinez, R., Ordonez Sanchez, S., Allmark, M., Lloyd, C., O’Doherty, T., Germain, G., Gaurier, B., & Johnstone, C. (2020). Analysis of the effects of control strategies and wave climates on the loading and performance of a laboratory scale horizontal axis tidal turbine, Ocean Engineering, 212, 107713.
Menter, F. R., Matyushenko, A., & Lechner, R. (2020). Development of a generalized k-ω two-eq. turbulence model. New Results in Numerical and Experimental Fluid Mechanics XII, 101–109.
Menter, F. R. (1993). Zonal two Eq. k-ꞷ turbulence models for aerodynamic flows. 24th fluid dynamics conference, Orlando, Florida.
Muis, A., Sutikno, P., Soewono A., & Hartono, F. (2015). Design Optimization of Axial Hydraulic Turbine for Very Low Head Application, Energy Procedia, 68, 263-273.
Nguyen, D. A., Ma, S. B., Kim, S., & Kim, J. H. (2023). Hydrodynamic optimization of the impeller and diffuser vane of an axial-flow pump. Journal of Mechanical Science and Technology
Pfleiderer, C., & Petermann, H. (1979). Flow Machines. Technical and Scientific Books S/A. Rio de Janeiro, RJ, Brazil.
Pinto, R. N., Afzal, A., D’Souza, L. V., Ansari, Z., & Samee, A. D. M. (2017). Computational fluid dynamics in turbomachinery: A review of state of the art. Arch Computational Methods Eng, 24, 467–479.
Schlichting, H., & Truckenbrodt, E. (1959) Aerodynamik des Flugzeuges. Berlin: Springer-Verlag.
Scholz, N. (1965). Aerodinamik der Scaufelgitter. In I. Band G. Verlag (Eds.), Braun, Karlsruhe.
Shi, L. J., Tang, F. P., Liu, C., Xie, R. S., & Zhang, W. P. (2016). Optimal design of multi-conditions for axial flow pump. Earth and Environmental Science, 49.
Silva, P. A. S. F., Shinomiya, L. D., Oliveira, T. F., Vaz, J. R. P., Amarante Mesquita, A. L., & Brasil Junior, A. C. P. (2017). Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM. Applied Energy, 185, 1281-1291.
Srinivasan, K. M. (2008). Rotodynamic pumps (Centrifugal and axial). New Age International Publishers.
Stepanoff, A. F. (1957). Centrifugal ad axial flow pumps: Theory, Design and application, 2n ed. Wiley, NY.
Stephen, C. K. (1971). Design and construction of a water channel. National Science Foundation Project.
Sutikno, P., & Adam. I. K. (2011). Design, simulation and experimental of the very low head turbine with minimum pressure and free vortex criterions, International Journal of Mechanical and Mechatronics Engineering, 11(1), 9-15.
Tyacke, J., Vadlamani, N. R., Trojak, W., Watson, R., Ma, Y., & Tucker, P. G. (2019). Turbomachinery simulation challenges and the future. Progress in Aerospace Sciences, 110, 100554.
Wang, Z., Cheng, H., Bensow, R. E., Peng, X., & Ji, B. (2023). Numerical assessment of cavitation erosion risk on the Delft twisted hydrofoil using a hybrid Eulerian-Lagrangian strategy. International Journal of Mechanical Sciences, 259, 108618,
Watanabe, T., Sato, H., Henmi, Y., Horiguchi, H., Kawata, Y., & Tsujimoto, Y. (2009). Rotating choke and choked surge in an axial pump impeller. International Journal of Fluid Machinery and Systems. 2(3), 232–238.
Wilcox, D. C. (2006). Turbulence Modeling for CFD. 3rd edition, DCW Industries, Inc., La Canada CA.
Wu, C. H. (1952). A general theory of steady three-dimensional flow of a non-viscous fluid in Subsonic and Supersonic Turbomachines of Axial-, Radial, and Mixed-Flow Types. NACA, Washington.
Xie, C., Zhang, C., Fu, T., Zhang, T., Feng, A., & Jin, Y. X. (2019). Numerical analysis and model test verification of energy and cavitation characteristics of axial flow pumps. Water, 14(18), 2853.
Ye, J., Tan, L., Shi, W., Chen, C., & Francis, E. M. (2022). Numerical simulation of axial-flow pump cavitation based on variable frequency speed regulation. Water, 14(17).
Zhang, Y., Najafi, M. J., Heydari Beni, M. H., Davar, A., Toghraie, D., Shafiee, B. M., Jam, J. E., & Hekmatifar, M. (2022). The effects of geometric shapes at different assembly gaps to achieve the optimal hydrodynamic conditions. Renew Energy, 184, 452-459.