A Three-dimensional CFD Study on Multiphase Flow in an FCC Regenerator Integrated with Oxy-combustion

Document Type : Regular Article

Author

1 Advanced Materials Research Group, University of Nottingham, Nottingham, NG72RD, United Kingdom

2 Mechanical Engineering, Inönü University, Malatya, 44280, Türkiye

10.47176/jafm.17.02.2168

Abstract

A vital process for converting heavy petroleum productions is Fluid Catalytic Cracking (FCC). As a major source of CO2 emissions, the regenerator reactor in the FCC unit accounts for about 20-35% of the refinery's total emissions. A common method for reducing CO2 emissions from the FCC regenerator is oxy-combustion, which has different advantages with regard to reducing energy penalties and associated costs. In this study, a computational fluid dynamic (CFD) study was used to examine the hydrodynamic characteristics of solid particles and gas inside the FCC regenerator, allowing CO2 to be captured more efficiently. Utilizing Ansys Fluent platform, the Eulerian-Eulerian model was applied with granular flow kinetic theory. In the simulations, different mesh sizes were tested, and the hydrodynamics of the oxy-combustion regenerator were evaluated by adjusting CO2 flow rates to achieve similar fluidization behaviors. The CFD results indicated that the conventional drag model accurately predicted the density phases within the bed. In oxy-combustion, CO2, due to its density, naturally creates a smaller dense phase compared to air-combustion. Moreover, optimizing the fluidizing gas velocities resulted in enhanced particle mixing, resulting in a distributed flow with vortices within the dense phases due to a reduction in gas velocity. To improve the environmental performance of the FCC unit, this research provides valuable insight into the hydrodynamics of solid catalysts used in the oxy-combustion process. 

Keywords

Main Subjects


Aboudaoud, S., Touzani, S., Abderafi, S., & Cheddadi, A. (2023). CFD simulation of air-glass beads fluidized bed hydrodynamics. Journal of Applied Fluid Mechanics, 16(9), 1778-1791. https://doi.org/10.47176/jafm.16.09.1742 
Alzate Hernández, J. D. (2016). CFD simulation of an industrial FCC regenerator. Escuela de Procesos y Energía.
Amblard, B., Singh, R., Gbordzoe, E., & Raynal, L. (2017). CFD modeling of the coke combustion in an industrial FCC regenerator. Chemical Engineering Science, 170, 731-742. https://doi.org/10.1016/j.ces.2016.12.055 
Ansys, I. J. C. (2011). Ansys Fluent theory guide.
Azarnivand, A., Behjat, Y., & Safekordi, A. A. (2018). CFD simulation of gas–solid flow patterns in a downscaled combustor-style FCC regenerator. Particuology, 39, 96-108. https://doi.org/10.1016/j.partic.2017.10.009 
Berrouk, A. S., Huang, A., Bale, S., Thampi, P., & Nandakumar, K. (2017). Numerical simulation of a commercial FCC regenerator using multiphase particle-in-cell methodology (MP-PIC). Advanced Powder Technology, 28(11), 2947-2960. https://doi.org/10.1016/j.apt.2017.09.002 
Chang, J., Wang, G., Lan, X., Gao, J., & Zhang, K. (2013). Computational investigation of a turbulent fluidized-bed FCC regenerator. Industrial & Engineering Chemistry Research, 52(11), 4000-4010. https://doi.org/10.1021/ie3013659 
Chang, J., Zhao, J., Zhang, K., & Gao, J. (2016). Hydrodynamic modeling of an industrial turbulent fluidized bed reactor with FCC particles. Powder Technology, 304, 134-142. https://doi.org/10.1016/j.powtec.2016.04.048
Chen, L., Ma, H., Ma, G., Pan, G., Li, P., & Sun, Z. (2022). Performance improvement prediction of push chain moist-mix concrete spraying machine employing orifice plate. Journal of Mechanical Science and Technology, 36(6), 2889-2901. https://doi.org/10.1007/s12206-022-0521-z 
Chu, K., & Yu, A. (2008). Numerical simulation of the gas− solid flow in three-dimensional pneumatic conveying bends. Industrial & Engineering Chemistry Research, 47(18), 7058-7071. https://doi.org/10.1021/ie800108c 
Cui, H., & Grace, J. R. (2007). Fluidization of biomass particles: A review of experimental multiphase flow aspects. Chemical Engineering Science, 62(1-2), 45-55. https://doi.org/10.1016/j.ces.2006.08.006 
Da Silva, T. C., Pinto, J. F., Santos, F. M., dos Santos, L. T., Aranda, D. A., Ribeiro, F., . . . Pereira, M. M. (2015). Vanadium and alumina modified with groups I and II elements for CO2 and coke reaction under fluid catalytic cracking process. Applied Catalysis B: Environmental, 164, 225-233. https://doi.org/10.1016/j.apcatb.2014.09.028 
De Mello, L. F., Gobbo, R., Moure, G. T., & Miracca, I. (2013). Oxy-combustion technology development for Fluid Catalytic Crackers (FCC)–large pilot scale demonstration. Energy procedia, 37, 7815-7824. https://doi.org/10.1016/j.egypro.2013.06.562 
Digne, R., Feugnet, F., & Gomez, A. (2014). A technical and economical evaluation of CO2 capture from fluidized catalytic cracking (FCC) flue gas. Oil & Gas Science and Technology-Revue d'IFP Energies nouvelles, 69(6), 1081-1089. https://doi.org/10.2516/ogst/2013209 
Dos Santos, L. T., Santos, F. M., Silva, R. S., Gomes, T. S., Esteves, P. M., Pimenta, R. D., . . . Pereira, M. M. (2008). Mechanistic insights of CO2-coke reaction during the regeneration step of the fluid cracking catalyst. Applied Catalysis A: General, 336(1-2), 40-47. https://doi.org/10.1016/j.apcata.2007.10.005 
Erdoğan, A., & Daşkın, M. (2023). Comparing of CFD contours using image analysing method: a study on velocity distributions. Black Sea Journal of Engineering and Science, 6(4), 633-638. https://doi.org/10.34248/bsengineering.1310711
Fluent, A. (2009). ANSYS Fluent 12.0 user’s guide. Ansys Inc, 15317, 1-2498.
Gao, J., Lan, X., Fan, Y., Chang, J., Wang, G., Lu, C., & Xu, C. (2009). Hydrodynamics of gas–solid fluidized bed of disparately sized binary particles. Chemical Engineering Science, 64(20), 4302-4316. https://doi.org/10.1016/j.ces.2009.07.003 
Gidaspow, D. (1994). Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic press. https://doi.org/10.1016/0032-5910(95)90055-1 
Güleç, F., Meredith, W., Sun, C. G., & Snape, C. E. (2019). A novel approach to CO2 capture in fluid catalytic cracking-chemical looping combustion. Fuel, 244, 140-150. https://doi.org/10.1016/j.fuel.2019.01.168 
Güleç, F., Meredith, W., & Snape, C. E. (2020a). Progress in the CO2 capture technologies for fluid catalytic cracking (FCC) units—a review. Frontiers in Energy Research, 8, 62. https://doi.org/10.3389/fenrg.2020.00062 
Güleç, F., Meredith, W., Sun, C. G., & Snape, C. E. (2020b). Demonstrating the applicability of chemical looping combustion for the regeneration of fluid catalytic cracking catalysts. Chemical Engineering Journal, 389, 124492. https://doi.org/10.1016/j.cej.2020.124492 
Güleç, F., Erdogan, A., Clough, P. T., & Lester, E. (2021). Investigation of the hydrodynamics in the regenerator of fluid catalytic cracking unit integrated by chemical looping combustion. Fuel Processing Technology, 223, 106998.  https://doi.org/10.1016/j.fuproc.2021.106998 
Güleç, F., & Okolie, J. A. (2023). Decarbonising bioenergy through biomass utilisation in chemical looping combustion and gasification: a review. Environmental Chemistry Letters, 1-27. https://doi.org/10.1007/s10311-023-01656-5
Güleç, F., Meredith, W., & Snape, C. E. (2023a). CO2 capture from fluid catalytic crackers via chemical looping combustion: Regeneration of coked catalysts with oxygen carriers. Journal of the Energy Institute, 101187. https://doi.org/10.1016/j.joei.2023.101187 
Güleç, F., Okolie, J. A., Clough, P. T., Erdogan, A., Meredith, W., & Snape, C. E. (2023b). Low-temperature chemical looping oxidation of hydrogen for space heating. Journal of the Energy Institute, 110, 101355. https://doi.org/10.1016/j.joei.2023.101355
Güleç, F., Okolie, J. A., & Erdogan, A. (2023c). Techno-economic feasibility of fluid catalytic cracking unit integrated chemical looping combustion–A novel approach for CO2 capture. Energy, 284, 128663. https://doi.org/10.1016/j.energy.2023.128663
Hashim, M. Y., Abdelmotalib, H. M., Kim, J. S., Ko, D. G., & Im, I. T. (2020). A numerical study on gas-to-particle and particle-to-particle heat transfer in a conical fluidized bed reactor. Journal of Mechanical Science and Technology, 34, 2391-2402. https://doi.org/10.1007/s12206-020-0516-6 
Jones, D. S., & Pujadó, P. P. (2006). Handbook of petroleum processing. Springer Science & Business Media.
Kamer, M., Erdoğan, A., Tacgun, E., Sonmez, K., Kaya, A., Aksoy, I., & Canbazoglu, S. (2018). A performance analysis on pressure loss and airflow diffusion in a chamber with perforated V-profile diffuser designed for air handling units (AHUs). Journal of Applied Fluid Mechanics, 11(4), 1089-1100. https://doi.org/10.29252/jafm.11.04.27699 
Karabulut, K. (2023a). Heat transfer increment study taking into consideration fin lengths for CuO-water nanofluid in cross flow-impinging jet flow channels. Thermal Science, (00), 35-35. https://doi.org/10.2298/TSCI221203035K
Karabulut, K. (2023b). Investigation of heat transfer improvements of graphene oxide-water and diamond-water nanofluids in cross-flow-impinging jet flow channels having fin. Isı Bilimi ve Tekniği Dergisi, 43(1), 11-30. https://doi.org/10.47480/isibted.1290668
Khan, M., Hussain, M., Mansourpour, Z., Mostoufi, N., Ghasem, N., & Abdullah, E. (2014). CFD simulation of fluidized bed reactors for polyolefin production–A review. Journal of Industrial and Engineering Chemistry, 20(6), 3919-3946. https://doi.org/10.1016/j.jiec.2014.01.044 
Launder, B. E., & Spalding, D. B. J. (1972). Lectures in mathematical models of turbulence. https://lccn.loc.gov/72083798
Li, P., Lan, X., Xu, C., Wang, G., Lu, C., & Gao, J. (2009). Drag models for simulating gas–solid flow in the turbulent fluidization of FCC particles. Particuology, 7(4), 269-277. https://doi.org/10.1016/j.partic.2009.03.010 
Li, S., & Shen, Y. (2022). Numerical simulation of multiphase flow in a full coal-direct chemical looping combustion process. Chemical Engineering Science, 248, 117233. https://doi.org/10.1016/j.ces.2021.117233 
Lu, F., Wei, K., Wang, M., Li, M., & Bao, H. (2023). Oil film deposition characteristics and judgment of lubrication effect of splash lubricated gears. Journal of Mechanical Science and Technology, 1-11. https://doi.org/10.1007/s12206-023-0415-8 
Mezhericher, M., Levy, A., & Borde, I. (2012). Probabilistic hard-sphere model of binary particle–particle interactions in multiphase flow of spray dryers. International Journal of Multiphase Flow, 43, 22-38. https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.009 
Miracca, I., & Butler, D. (2015). CO2 capture from a fluid catalytic cracking unit: technical/economical evaluation. Carbon Dioxide Capture for Storage in Deep Geologic Formations, eds KF Gerdes.(Gerdes: CPL Press), 67-81.
Pourahmadi, S., & Talebi, S. (2020). Hydrodynamic simulation of two-phase flow in an industrial electrowinning cell with new scheme. Journal of Applied Fluid Mechanics, 14(1), 243-257. https://doi.org/10.47176/jafm.14.01.31207 
Rautiainen, A., Stewart, G., Poikolainen, V., & Sarkomaa, P. (1999). An experimental study of vertical pneumatic conveying. Powder Technology, 104(2), 139-150. https://doi.org/10.1016/s0032-5910(99)00056-x 
Schwarz, M. P., & Lee, J. (2007). Reactive CFD simulation of an FCC regenerator. AsiaPacific Journal of Chemical Engineering, 2(5), 347-354. https://doi.org/10.1002/apj.64 
Singh, R., & Gbordzoe, E. (2017). Modeling FCC spent catalyst regeneration with computational fluid dynamics. Powder Technology, 316, 560-568. https://doi.org/10.1016/j.powtec.2016.10.058 
Syamlal, M., Rogers, W., & O’Brien, T. (1993). MFIX documentation: Volume 1, theory guide. National Technical Information Service, Springfield, VA. https://doi.org/10.2172/656644 
Taghipour, F., Ellis, N., & Wong, C. (2005). Experimental and computational study of gas–solid fluidized bed hydrodynamics. Chemical Engineering Science, 60(24), 6857-6867. https://doi.org/10.1016/j.ces.2005.05.044 
Tang, G., Silaen, A., Wu, B., Fu, D., Agnello-Dean, D., Wilson, J., . . . Zhou, C. Q. (2017a). Numerical study of a fluid catalytic cracking regenerator hydrodynamics. Powder Technology, 305, 662-672. https://doi.org/10.1016/j.powtec.2016.09.082 
Tang, G., Silaen, A. K., Wu, B., Fu, D., Agnello-Dean, D., Wilson, J., . . . Zhou, C. Q. (2017b). Numerical simulation and optimization of an industrial fluid catalytic cracking regenerator. Applied Thermal Engineering, 112, 750-760. https://doi.org/10.1016/j.applthermaleng.2016.10.060 
Yang, Z., Zhang, Y., Liu, T., & Oloruntoba, A. (2021a). MP-PIC simulation of the effects of spent catalyst distribution and horizontal baffle in an industrial FCC regenerator. Part II: Effects on regenerator performance. Chemical Engineering Journal, 421, 129694. https://doi.org/10.1016/j.cej.2021.129694 
Yang, Z., Zhang, Y., Oloruntoba, A., & Yue, J. (2021b). MP-PIC simulation of the effects of spent catalyst distribution and horizontal baffle in an industrial FCC regenerator. Part I: Effects on hydrodynamics. Chemical Engineering Journal, 412, 128634. https://doi.org/10.1016/j.cej.2021.128634 
Zhang, S., Liu, N., Pan, Y., Wang, W., Li, Y., & Zhu, Y. (2021). Three-dimensional modelling of two-phase flow and transport in a pilot centrifugal spray dryer. Chemical Physics Letters, 765, 138309. https://doi.org/10.1016/j.cplett.2020.138309 
Zimmermann, S., & Taghipour, F. (2005). CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors. Industrial & engineering chemistry research, 44(26), 9818-9827. https://doi.org/10.1021/ie050490+