Evaluation of Various Flow Control Methods in Reducing Drag and Aerodynamic Heating on the Nose of Hypersonic Flying Objects

Document Type : Regular Article


Department of Mechanical Engineering, Arak University of Technology, Arak, Iran



Effective deduction of air heating load and drag is a critical issue in hypersonic vehicle engineering applications. In this research, seven various geometrical models have been proposed to study and compare the effect of each configuration on the flow field, drag, and aerodynamic heating deduction under the same flow conditions. The presented configurations in this study: (a) blunt-body geometry as a reference of comparison, (b) blunt-body geometry with a spike, (c) blunt-body geometry with an counter flow jet, (d) blunt-body geometry with a spike and counter flow jet, (e) blunt-body geometry with a spike and aerodisk, (f) blunt-body geometry with a spike, aerodisk, and root counter flow jet, (g) blunt-body geometry with a spike, four aerodisks and root counter flow jet. The Reynolds-Averaged equations have been solved using the Finite Volume Method (FVM) along with the shear stress turbulence model (k-ω SST). The flow is assumed compressible, steady-state, and axisymmetric with a free stream Mach number of 6. According to the study of each configuration’s performance related to the parameters of drag, maximum pressure, and maximum heat flux factors on the blunt-body walls, (g) configuration with a drag factor of 0.2699, maximum pressure factor of 209.8, and maximum heat flux factor of 25.1, has the most deduction on the blunt-body walls among the seven configurations. The deduction percentage of drag, maximum pressure, and maximum heat flux factors of (g) configuration to (a) configuration are %72.1, %94.5, and %79.9, respectively, which significantly diminished drag and heat flux. Also, the best configuration scenarios for drag and aerodynamic heating deduction are geometrical models of g, f, d, e, c, b, and a, respectively.


Main Subjects

Ahmed, M., & Qin, N. (2011). Recent advances in the aerothermodynamics of spiked hypersonic vehicles. Progress in Aerospace Sciences, 47(6), 425-449. https://doi.org/10.1016/j.paerosci.2011.06.001
Ahmed, M. Y., & Qin, N. (2014). Investigation of flow asymmetry around axi-symmetric spiked blunt bodies in hypersonic speeds. The Aeronautical Journal, 118(1200), 169-179. https://doi.org/10.1017/S0001924000009052
Ahmed, M. Y., & Qin, N. (2020). Forebody shock control devices for drag and aero-heating reduction: A comprehensive survey with a practical perspective. Progress in Aerospace Sciences, 112, 100585. https://doi.org/10.1016/j.paerosci.2019.100585
Alexander, S. R. (1947). Results of Tests of determine the effect of a conical windshield on the drag of a bluff body at supersonic speeds. NACA PM No. L6KO8a
Anderson Jr, J. D., Lewis, M. J., Kothari, A. P., & Corda, S. (1991). Hypersonic waveriders for planetary atmospheres. Journal of Spacecraft and Rockets, 28(4), 401-410. https://doi.org/10.2514/3.26259
Betelin, V., Kushnirenko, A., Smirnov, N., Nikitin, V., Tyurenkova, V., & Stamov, L. (2018). Numerical investigations of hybrid rocket engines. Acta Astronautica, 144, 363-370. https://doi.org/10.1016/j.actaastro.2018.01.009
Bhamare, D. K., Rathod, M. K., & Banerjee, J. (2020). Numerical model for evaluating thermal performance of residential building roof integrated with inclined phase change material (PCM) layer. Journal of Building Engineering, 28, 101018. https://doi.org/10.1016/j.jobe.2019.101018
Bogdonoff, S. M., & Vas, I. E. (1959). Preliminary investigations of spiked bodies at hypersonic speeds. Journal of the Aerospace Sciences, 26(2), 65-74. https://doi.org/10.2514/8.7945
Chinnappan, A. K., Malaikannan, G., & Kumar, R. (2017). Insights into flow and heat transfer aspects of hypersonic rarefied flow over a blunt body with aerospike using direct simulation Monte-Carlo approach. Aerospace Science and Technology, 66, 119-128. https://doi.org/10.1016/j.ast.2017.02.024
Crawford, D. H. (1959). Investigation of the flow over a spiked-nose hemisphere-cylinder at a Mach number of 6.8. National Aeronautics and Space Administration. NASA TN D-118
Dem'ianov, I. A., & Shmanenkov, V. (1960). Investigation of reverse flows in the region of separation of the turbulent boundary layer. Journal of Applied Mathematics and Mechanics, 24(2), 340-343. https://doi.org/10.1016/0021-8928(60)90037-X
Desai, S., Prakash K, V., Kulkarni, V., & Gadgil, H. (2020). Universal scaling parameter for a counter jet drag reduction technique in supersonic flows. Physics of Fluids, 32(3), 036105. https://doi.org/10.1063/1.5140029
Eghlima, Z., Mansour, K., & Fardipour, K. (2018). Heat transfer reduction using combination of spike and counterflow jet on blunt body at high Mach number flow. Acta Astronautica, 143, 92-104. https://doi.org/10.1016/j.actaastro.2017.11.012
Fujii, K., Tsuda, S., Koyama, T., & Hirabayashi, N. (2013). Oscillation of bow-shock waves at hypersonic speeds. 43rd AIAA Fluid Dynamics Conference. https://doi.org/10.2514/6.2013-3103
Guenther, R. A., & Reding, J. P. (1977). Fluctuating pressure environment of a drag reduction spike. Journal of Spacecraft and Rockets, 14(12), 705-710. https://doi.org/10.2514/3.57253
Han, G., & Jiang, Z. (2018). Hypersonic flow field reconfiguration and drag reduction of blunt body with spikes and sideward jets. International Journal of Aerospace Engineering, 2018. https://doi.org/10.1155/2018/7432961
Hayashi, K., Aso, S., & Tani, Y. (2005). Numerical study of thermal protection system by opposing jet. 43rd AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2005-188
Hayashi, K., Aso, S., & Tani, Y. (2006). Experimental study on thermal protection system by opposing jet in supersonic flow. Journal of Spacecraft and Rockets, 43(1), 233-235. https://doi.org/10.2514/1.15332
Holden, M. S. (1966). Experimental studies of separated flows at hypersonic speeds. I-Separated flows over axisymmetric spiked bodies. AIAA Journal, 4(4), 591-599. https://doi.org/10.2514/3.3494
Huang, J., & Yao, W. X. (2019). A novel non-ablative thermal protection system with combined spike and opposing jet concept. Acta Astronautica, 159, 41-48. https://doi.org/10.1016/j.actaastro.2019.02.005
Huang, J., & Yao, W. X. (2020). Hypersonic drag reduction mechanism of a novel combinational spike and multi-opposing jets aerodynamic configuration. Acta Astronautica, 171, 245-256. https://doi.org/10.1016/j.actaastro.2020.03.009
Huang, J., Yao, W. X., & Shan, X. Y. (2019). Numerical investigation on drag and heat reduction mechanism of combined spike and rear opposing jet configuration. Acta Astronautica, 155, 179-190. https://doi.org/10.1016/j.actaastro.2018.11.039
Huang, W., Zhang, R. R., Yan, L., Ou, M., & Moradi, R. (2018). Numerical experiment on the flow field properties of a blunted body with a counterflowing jet in supersonic flows. Acta Astronautica, 147, 231-240. https://doi.org/10.1016/j.actaastro.2018.04.018
Ji, C., Liu, B., Huang, W., Li, S. B., & Yan, L. (2021). Investigation on the drag reduction and thermal protection properties of the porous opposing jet in the supersonic flow: A parametric study with constant mass flow rate. Aerospace Science and Technology, 118, 107064. https://doi.org/10.1016/j.ast.2021.107064
Kushnirenko, A., Stamov, L., Tyurenkova, V., Smirnova, M., & Mikhalchenko, E. (2021). Three-dimensional numerical modeling of a rocket engine with solid fuel. Acta Astronautica, 181, 544-551. https://doi.org/10.1016/j.actaastro.2021.01.028
Li, S., Huang, W., Lei, J., & Wang, Z. (2018). Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles. International Journal of Heat and Mass Transfer, 126, 1087-1098. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.054
Love, E. S. (1952). The effects of a small jet of air exhausting from the nose of a body of revolution in supersonic flow. National Advisory Committee for Aeronautics. NACA RM L52119a
Ma, K., Li, Y., Zhu, L., Chen, X., & Zhou, C. (2020). Spike root oblique jet effect on drag and heat load reduction performance for hypersonic vehicles. Acta Astronautica, 177, 588-603. https://doi.org/10.1016/j.actaastro.2020.08.023
Mair, W. (1952). LXVIII. Experiments on separation of boundary layers on probes in front of blunt-nosed bodies in a supersonic air stream. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(342), 695-716. https://doi.org/10.1080/14786440708520987
Mansour, K., & Khorsandi, M. (2014). The drag reduction in spherical spiked blunt body. Acta Astronautica, 99, 92-98. https://doi.org/10.1016/j.actaastro.2014.02.009
Marley, C. D., & Riggins, D. W. (2011). Numerical study of novel drag reduction techniques for hypersonic blunt bodies. AIAA Journal, 49(9), 1871-1882. https://doi.org/10.2514/1.J050681
Mehta, R. (2000). Numerical heat transfer study over spiked blunt bodies at Mach 6.8. Journal of Spacecraft and Rockets, 37(5), 700-703. https://doi.org/10.2514/2.3622
Mehta, R. (2002). Numerical analysis of pressure oscillations over axisymmetric spiked blunt bodies at Mach 6.80. Shock Waves, 11(6), 431-440. https://doi.org/10.1007/s001930200127
Meng, Y. S., Yan, L., Huang, W., & Wang, Z. W. (2021). Fluid-thermal coupled investigation on the combinational spike and opposing/lateral jet in hypersonic flows. Acta Astronautica, 185, 264-282. https://doi.org/10.1016/j.actaastro.2021.05.022
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Milicev, S. S., & Pavlovic, M. D. (2002). Influence of spike shape at supersonic flow past blunt-nosed bodies: experimental study. AIAA Journal, 40(5), 1018-1020. https://doi.org/10.2514/2.1745
Motoyama, N., Mihara, K., Miyajima, R., Watanuki, T., & Kubota, H. (2001). Thermal protection and drag reduction with use of spike in hypersonic flow. 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. https://doi.org/10.2514/6.2001-1828
Narayana, G., & Selvaraj, S. (2020). Attenuation of pulsation and oscillation using a disk at mid-section of spiked blunt body. Physics of Fluids, 32(11), 116106. https://doi.org/10.1063/5.0024649
Ou, M., Yan, L., Huang, W., & Zhang, T. T. (2019). Design exploration of combinational spike and opposing jet concept in hypersonic flows based on CFD calculation and surrogate model. Acta Astronautica, 155, 287-301. https://doi.org/10.1016/j.actaastro.2018.12.012
Panaras, A. G., & Drikakis, D. (2009). High-speed unsteady flows around spiked-blunt bodies. Journal of Fluid Mechanics, 632, 69-96. https://doi.org/10.1017/S0022112009006235
Piland, R. O., & Putland, L. W. (1956). Zero-Lift drag of several conical and blunt nose shapes obtained in free flight at mach numbers of 0.7 to 1.3. RM L54A27
Qin, Q., & Xu, J. (2019). Numerical evaluation of aerodome and cooling jet for aeroheating reduction. Aerospace Science and Technology, 86, 520-533. https://doi.org/10.1016/j.ast.2019.01.046
Qin, Q., Xu, J., & Guo, S. (2018). Reduction of aeroheating and drag using lateral/oblique/opposing jet on aerodome. Journal of Spacecraft and Rockets, 55(2), 523-527. https://doi.org/10.2514/1.A34041
Qu, F., Sun, D., Bai, J., Zuo, G., & Yan, C. (2018). Numerical investigation of blunt body’s heating load reduction with combination of spike and opposing jet. International Journal of Heat and Mass Transfer, 127, 7-15. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.154
Raman, S. K., Kexin, W., Kim, T. H., Suryan, A., & Kim, H. D. (2020). Effects of flap on the reentry aerodynamics of a blunt cone in the supersonic flow. International Journal of Mechanical Sciences, 176, 105396. https://doi.org/10.1016/j.ijmecsci.2019.105396
Rashid, S., Nawaz, F., Maqsood, A., Riaz, R., & Salamat, S. (2019). Shock reduction through opposing jets—aerodynamic performance and flight stability perspectives. Applied Sciences, 10(1), 180. https://doi.org/10.3390/app10010180
Rashid, S., Nawaz, F., Maqsood, A., Salamat, S., Riaz, R., Dala, L., & Ahmad, R. (2021). Modeling and analysis of shock reduction through counterflow plasma jets. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/5592855
Renane, R., Allouche, R., Zmit, O., & Bouchama, B. (2022). Aero Heating Optimization of a Hypersonic Thermochemical Non-Equilibrium Flow around Blunt Body by Application of Opposing Jet and Blunt Spike. Hypersonic Vehicles-Applications, Recent Advances, and Perspectives. IntechOpen. https://doi.org/10.5772/intechopen.101659
Romeo, D. J. (1963). Exploratory investigation of the effect of a forward-facing jet on the bow shock of a blunt body in a Mach number 6 free stream. NASA TN, TN D-1605. NASA TN D-1605
Sahoo, D., Das, S., & Cohen, J. (2019). Effect of body nose fairing on the unsteady flow characteristics over spiked flat faced cylinder at supersonic speed. AIAA Scitech 2019 Forum. https://doi.org/10.2514/6.2019-2316
Sahoo, D., Das, S., Kumar, P., & Prasad, J. (2016). Effect of spike on steady and unsteady flow over a blunt body at supersonic speed. Acta Astronautica, 128, 521-533. https://doi.org/10.1016/j.actaastro.2016.08.005
Saravanan, S., Jagadeesh, G., & Reddy, K. (2009). Investigation of missile-shaped body with forward-facing cavity at Mach 8. Journal of Spacecraft and Rockets, 46(3), 577-591. https://doi.org/10.2514/1.38914
Seiler, F., Srulijes, J., Gimenez Pastor, M., & Mangold, P. (2007). Heat fluxes inside a cavity placed at the nose of a projectile measured in a shock tunnel at Mach 4.5. New results in numerical and experimental fluid mechanics VI. Springer. https://doi.org/10.1007/978-3-540-74460-3_38
Sharma, K., & Nair, M. T. (2020). Combination of counterflow jet and cavity for heat flux and drag reduction. Physics of Fluids, 32(5), 056107. https://doi.org/10.1063/1.5143521
Shen, B., Liu, W., & Yin, L. (2018). Drag and heat reduction efficiency research on opposing jet in supersonic flows. Aerospace Science and Technology, 77, 696-703. https://doi.org/10.1016/j.ast.2018.03.051
Silton, S. I., & Goldstein, D. B. (2005). Use of an axial nose-tip cavity for delaying ablation onset in hypersonic flow. Journal of Fluid Mechanics, 528, 297-321. https://doi.org/10.1017/S0022112004002460
Stalder, J. R., & Nielsen, H. V. (1954). Heat transfer from a hemisphere-cylinder equipped with flow-separation spikes. NACA-TN-3287
Sundarraj, V., Sundarraj, K., & Kulkarni, P. S. (2021). Thermo-fluid analysis of supersonic flow over ballistic shaped bodies with multiple aero-disk spike configurations. Acta Astronautica, 180, 292-304. https://doi.org/10.1016/j.actaastro.2020.12.022
Tahani, M., Karimi, M., Motlagh, A. M., & Mirmahdian, S. (2013). Numerical investigation of drag and heat reduction in hypersonic spiked blunt bodies. Heat and Mass Transfer, 49(10), 1369-1384. https://doi.org/10.1007/s00231-013-1173-4
Tembhurnikar, P. V., Jadhav, A. T., & Sahoo, D. (2020). Effect of intermediate aerodisk mounted sharp tip spike on the drag reduction over a hemispherical body at Mach 2.0. FME Transactions, 48(4), 779-786. https://doi.org/10.5937/fme2004779T
Vali, S. E., & Abbasi, S. (2022). Hypersonic drag and heat reduction mechanism of a new hybrid method of spike, multi-row discs and opposing jets aerodynamic configuration. International Journal of Heat and Mass Transfer, 194, 123034. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123034
Wang, Z., & Zhang, X. (2022). Parametric research on drag reduction and thermal protection of blunt-body with opposing jets of forward convergent nozzle in supersonic flows. Acta Astronautica, 190, 218-230. https://doi.org/10.1016/j.actaastro.2021.10.021
Xie, W., Luo, Z., Hou, L., Zhou, Y., Liu, Q., & Peng, W. (2021). Characterization of plasma synthetic jet actuator with Laval-shaped exit and application to drag reduction in supersonic flow. Physics of Fluids, 33(9), 096104. https://doi.org/10.1063/5.0064533
Yadav, R., Bodavula, A., & Joshi, S. (2018). Numerical investigation of the effect of disk position on the aerodynamic heating and drag of a spiked blunt body in hypersonic flow. The Aeronautical Journal, 122(1258), 1916-1942. https://doi.org/10.1017/aer.2018.109
Yamauchi, M., Fujii, K., & Higashino, F. (1995). Numerical investigation of supersonic flows around a spiked blunt body. Journal of Spacecraft and Rockets, 32(1), 32-42. https://doi.org/10.2514/3.26571
Zhang, J., Ma, H., & Qin, Y. (2017). Experimental investigation on flow characteristic of combination of forward-facing jet and spike. 21st AIAA International Space Planes and Hypersonics Technologies Conference. https://doi.org/10.2514/6.2017-2402
Zhang, W., Wang, X., Zhang, Z., Han, F., & Zhao, S. (2022). Heat and drag reduction of single and combined opposing jets in hypersonic nonequilibrium flows. Aerospace Science and Technology, 121, 107194. https://doi.org/10.1016/j.ast.2021.107194
Zhong, K., Yan, C., Chen, S. S., Zhang, T. X., & Lou, S. (2019). Aerodisk effects on drag reduction for hypersonic blunt body with an ellipsoid nose. Aerospace Science and Technology, 86, 599-612. https://doi.org/10.1016/j.ast.2019.01.027
Zhu, L., Chen, X., Li, Y., Musa, O., & Zhou, C. (2018). Investigation of drag and heat reduction induced by a novel combinational lateral jet and spike concept in supersonic flows based on conjugate heat transfer approach. Acta Astronautica, 142, 300-313. https://doi.org/10.1016/j.actaastro.2017.11.001
Zhu, L., Li, Y., Chen, X., Gong, L., Xu, J., & Feng, Z. (2019). Novel combinational aerodisk and lateral jet concept for drag and heat reduction in hypersonic flows. Journal of Aerospace Engineering, 32(1), 04018133. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000966
Zhu, L., Tian, X., Li, W., Yan, M., Tang, X., & Huang, M. (2021). Nonablative dual-jet strategy for drag and heat reduction of hypersonic blunt vehicles. Journal of Aerospace Engineering, 34(5), 04021052. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001290