Numerical and Experimental Investigation of the Influence of Backpressure on a Confined Impinging Jet for Small Nozzle-to-plate Spacing

Document Type : Regular Article


1 School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China

2 Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, China

3 School of Mechanical Engineering, Yangzhou University 225009, China



In order to further extend understanding of the heat transfer characteristics under an enclosed area, the influence of backpressure on a single impingement jet with small nozzle-to-plate spacing (H/D) is studied. Particle image velocimetry (PIV) technique and a commercial fluid dynamics solver (CFD) are respectively employed to investigate the fluid dynamics of the impinging jet, with a Reynolds number (Re) of 3462–6125, at a small nozzle-to-plate spacing (H/D) of 0.25–1.25. Experimental data are in well agreement with numerical simulation data. The findings indicate that the H/D ratio significantly influences the formation of backpressure in the flow field. The backpressure then influences the boundary layer velocity on the impingement surface, in turn affecting the impingement surface's heat transfer characteristics. In addition, a turning point in the horizontal velocity curve of H/D = 0.4 is found for an entire range of jet heights, which is independent of the Reynolds number (Re).


Main Subjects

Chang, S. W., & Shen H. D. (2020). Heat transfer characteristics of swirling impinging jet-arrays issued from nozzle plates with and without webbed grooves. International Journal of Thermal Sciences, 148, 106155.
Chen, L. L., Brakmann, R. G. A., Weigand, B., Crawford, M., & Poser, R. (2019). Detailed heat transfer investigation of an impingement jet array with large jet-to-jet distance. International Journal of Thermal Sciences, 146, 106058.
Choo, K. S., & Kim, S. J. (2010). Heat transfer characteristics of impinging air jets under a fixed pumping power condition. International Journal of Heat and Mass Transfer, 53, 320–326.
Choo, K., Friedrich, B. K., Glaspell, A. W., & Schilling, K. A. (2016). The influence of nozzle-to-plate spacing on heat transfer and fluid flow of submerged jet impingement. International Journal of Heat and Mass Transfer, 97, 66–69.
Frosell, T., Fripp, M., & Gutmark, E. (2018). Dynamics of the impingement region of a circular turbulent jet. Experimental Thermal and Fluid Science, 91, 399–409.
Geers, L. F. G., Hanjalic, K., & Tummers, M. J. (2005). Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. Journal of Fluid Mechanics, 546, 255–284.
Gil, P., & Wilk, J. (2020). Heat transfer coefficients during the impingement cooling with the use of synthetic jet. International Journal of Thermal Sciences, 147, 106132.
Hadipour, A., & Rajabi Zargarabadi, M. (2018). Heat transfer and flow characteristics of impinging jet on a concave surface at small nozzle to surface distances. Applied Thermal Engineering, 138, 534–541.
Hassan, A. A., & Ismael, M. A. (2023). Fluid-structure interaction of a sweeping impingement jet for cooling hot flat target. International Journal of Thermal Sciences, 190, 108323.
He, C. X., & Liu, Y. Z. (2018). A dynamic detached-eddy simulation model for turbulent heat transfer: Impinging jet. International Journal of Heat and Mass Transfer, 127, 326–338.
Huang, H., Sun, T., Zhang, G., Li, D., & Wei, H. (2019). Evaluation of a developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer. International Journal of Heat and Mass Transfer, 139, 700–712.
Hussain, S., Ismael, M. A., & Chamkha, A. J. (2020). Impinging jet into an open trapezoidal cavity partially filled with a porous layer. International Communications in Heat and Mass Transfer, 118, 104870.
Ismael, M. A., Younes, O., Fteiti, M., Ghalambaz, M., & Homod, R. Z. (2023). Impingement jets on a confined assembly of rotating hot cylinder covered by a surface porous layer. Applied Thermal Engineering, 229, 120470.
Kalifa, R. B., Habli, S., Saïd, N. M., Bournot, H., & Palec G. L. (2016). Parametric analysis of a round jet impingement on a heated plate. International Journal of Heat and Fluid Flow, 57, 11–23.
Kuraan, A. M., Moldovan, S. I., & Choo, K. (2017). Heat transfer and hydrodynamics of free water jet impingement at low nozzle-to-plate spacings. International Journal of Heat and Mass Transfer, 108, 2211–2216.
Lyu, Y. W., Zhang, J. Z., Liu, X. C., & Shan, Y. (2019). Experimental study of single-row chevron-jet impingement heat transfer on concave surfaces with different curvatures. Chinese Journal of Aeronautics, 32, 2275–2285.
Nagesha, K., Srinivasan, K., & Sundararajan, T. (2019). Enhancement of jet impingement heat transfer using surface roughness elements at different heat inputs. Experimental Thermal and Fluid Science, 112, 109995.
Pachpute, S., & Premachandran, B. (2018). Effect of the shape of flow confinement on turbulent slot jet impingement cooling of a heated circular cylinder. International Journal of Thermal Sciences, 131, 114–131.
Pachpute, S., & Premachandran, B. (2020). Turbulent multi-jet impingement cooling of a heated circular cylinder. International Journal of Thermal Sciences, 148, 106167.
Qiu, T., Song, X., Lei, Y., Dai, H. F., Cao, C. L., Xu, H., & Feng, X. (2016). Effect of backpressure on nozzle inner flow in fuel injector. Fuel, 173, 79–89.
Qiu, T., Wang, K. X., Lei, Y., Wu, C. L., Liu, Y. W., Chen, X. Y., & Guo, P. (2018). Investigation on effects of backpressure on submerged jet flow from short cylindrical orifice filled with diesel fuel. Energy, 162, 964–976.
Sexton, A., Punch, J., Stafford, J., & Jeffers, N. (2018). The thermal and hydrodynamic behaviour of confined, normally impinging laminar slot jets. International Journal of Heat and Mass Transfer, 123, 40–53.
Tang, Z. G., Deng, F., Wang, S. C., & Cheng, J. P. (2021). Numerical simulation of flow and heat transfer characteristics of a liquid jet impinging on a cylindrical cavity heat sink. Journal of Applied Fluid Mechanics, 14, 723–732.
Terzis, A. (2016). On the correspondence between flow structures and convective heat transfer augmentation for multiple jet impingement. Experiments in Fluids, 57, 1–14.
Thani, M. A., & Ismael, M. A. (2022). Numerical study of jet impingement on heated sink covered by a porous layer. Basrah Journal for Engineering Sciences, 22, 1–9.
Yeom, T., Huang, L. Z., Zhang, M., Simon, T., & Cui, T. H. (2019). Heat transfer enhancement of air-cooled heat sink channel using a piezoelectric synthetic jet array. International Journal of Heat and Mass Transfer, 143, 118484.
Yu, J., Peng, L., Bu, X. Q., Shen, X. B., Lin, G. P., & Bai, L. Z. (2018). Experimental investigation and correlation development of jet impingement heat transfer with two rows of aligned jet holes on an internal surface of a wing leading edge. Chinese Journal of Aeronautics, 31, 1962–1972.
Yu, P. P., Zhu, K. Q., Shi, Q., Yuan, N. Y., & Ding, J. N. (2017). Transient heat transfer characteristics of small jet impingement on high-temperature flat plate. International Journal of Heat and Mass Transfer, 114, 981–991.
Zhang, Y. Y., Li, P., & Xie, Y. H. (2018). Numerical investigation of heat transfer characteristics of impinging synthetic jets with different waveforms. International Journal of Heat and Mass Transfer, 125, 1017–1027.
Zhao, Y. L., Zhou, Y. Y., & Zhao, Y. X. (2022). Experimental study of the unstart/restart process of a two-dimensional supersonic inlet induced by backpressure. Journal of Applied Fluid Mechanics, 15, 415–426.