Effect of GNP/Ni-TiO2 Nanocomposite Coated Copper Surfaces Fabricated by Electro Chemical Deposition under Nucleate Pool Boiling Regime: A Comprehensive Experimental Study

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura-799046, India

2 Department of Mechanical Engineering, National Institute of Technology Arunachal Pradesh, Jote-791113, India

10.47176/jafm.17.3.2052

Abstract

Current study presents an experimental analysis of nucleate pool boiling on the GNP/Ni-TiO2 (GNP-graphene nano particle) nano-composite coated copper surfaces. In order to produce the microporous surfaces, a two-step electro-deposition process is used. This deposition results in the formation of a modified surface structure, and various surface morphological characteristics of this modified structure, like wettability, roughness and surface structure are studied. The results reveal an improvement in CHF (critical heat flux) and BHTC (boiling heat transfer coefficient) in case of GNP/Ni-TiO2 coated surfaces. The main elements influencing the improved heat transfer of the GNP/Ni-TiO2nano-composite coating are its increased wettability, roughness, and high thermal conductivity. The SNCCC (superhydrophilic nano-composite coated copper) surfaces have the maximum BHTC of 97.52 (kW/m2K) and CHF of 2043 (kW/m2), which are 93% and 88% higher than the base Cu surfaces respectively. Here, it is analysed how the performance of SNCCC surfaces are enhanced by the impact of different parameters, like the roughness of the surface and wettability. The bubble characteristics at the time of boiling is noticed using a high-speed camera, and several factors such as nucleation site density, bubble departure diameter, and bubble emission frequency are statistically studied for SNCCC surfaces. 

Keywords

Main Subjects


Ahn, H. S., Sinha, N., Zhang, M., Banerjee, D., Fang, S., & Baughman, R. H. (2006). Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests. Journal of Heat Transfer, 128(12), 1335-1342. https://doi.org/10.1115/1.2349511
Al-Chaabawi, M. J. H., Abdollahi, A., & Najafi, M. (2023). Pool boiling heat flux of ammonia refrigerant in the presence of iron oxide nanoparticles: A molecular dynamics approach. Engineering Analysis with Boundary Elements, 151, 387-393. https://doi.org/10.1016/j.enganabound.2023.03.012
Alvariño, P. F., Simón, M. L. S., Guzella, M. S., Paz, J. M. A., Jabardo, J. M. S., & Gómez, L. C. (2019). Experimental investigation of the CHF of HFE-7100 under pool boiling conditions on differently roughened surfaces. International Journal of Heat and Mass Transfer, 139, 269–279. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.142
Arenales, M. R. M., Kumar, S. C. S., Kuo, L. S., & Chen, P. H. (2020). Surface roughness variation effects on copper tubes in pool boiling of water. International Journal of Heat and Mass Transfer, 151, 119399. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119399
Benjamin, R. J., & Balakrishnan, A. R. (1997). Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Experimental Thermal and Fluid Science, 15, 32–42. https://doi.org/10.1016/S0894-1777(96)00168-9
Betz, A. R., Xu, J., Qiu, H., & Attinger, D. (2010). Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?. Applied Physics Letters, 97, 141909. https://doi.org/10.1063/1.3485057
Chu, K. H., Enright, R., & Wang, E. N. (2012). Structured surfaces for enhanced pool boiling heat transfer. Applied Physics Letters, 100, 241603. https://doi.org/10.1063/1.4724190
Chuang, T. J., Chang, Y. H., & Ferng, Y. M. (2019). Investigating effects of heating orientations on nucleate boiling heat transfer, bubble dynamics, and wall heat flux partition boiling model for pool boiling. Applied Thermal Engineering, 163, 114358. https://doi.org/10.1016/j.applthermaleng.2019.1143587u
Cole, R. (1967). Bubble frequencies and departure volumes at subatmospheric pressures. AIChE Journal, 13, 779–783. https://doi.org/10.1002/aic.690130434
Cooke, D., & Kandlikar, S. G. (2012). Effect of open microchannel geometry on pool boiling enhancement. International Journal of Heat and Mass Transfer, 55(4), 1004–1013. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.010
Dai, B., Qi, H., Liu, S., Zhong, Z., Li, H., Song, M., Ma, M., & Sun, Z. (2019). Environmental and economical analyses of transcritical CO2 heat pump combined with direct dedicated mechanical subcooling (DMS) for space heating in China. Energy Conversion and Management,198, 111317. https://doi.org/10.1016/j.enconman.2019.01.119
Das, A. K., Das, P. K., & Saha, P. (2007). Nucleate boiling of water from plain and structured surfaces. Experimental Thermal and Fluid Science, 31(8), 967–977. https://doi.org/10.1016/j.expthermflusci.2006.10.006
Das, S., Kumar, D. S., & Bhaumik, S. (2016). Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Applied Thermal Engineering, 96, 555–567. https://doi.org/10.1016/j.applthermaleng.2015.11.117
Das, S., Saha, B., & Bhaumik, S. (2017a). Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Applied Thermal Engineering, 113, 1345–1357. https://doi.org/10.1016/j.applthermaleng.2016.11.135
Das, S., Saha, B., & Bhaumik, S. (2017b). Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure. Experimental Thermal and Fluid Science, 81, 454–465. https://doi.org/10.1016/j.expthermflusci.2016.09.009
Dharmendra, M., Suresh, S., Kumar, C. S. S., & Yang, Q. (2016). Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate. Applied Thermal Engineering, 99, 61–71. https://doi.org/10.1016/j.applthermaleng.2015.12.081
Fang, X., & Dong, A. (2016). A comparative study of correlations of critical heat flux of pool boiling. Journal of Nuclear Science and Technology, 54, 1-12. https://doi.org/10.1080/00223131.2016.1209138
Fawzy, M. H., Ashour, M. M., & Halim, A. M. A. E. (1996). Effect of some operating variables on the characteristics of electrodeposited Ni-α-Al2O3 and Ni-TiO2 composites. Transactions of the IMF, 74(2), 72-77. https://doi.org/10.1080/00202967.1996.11871099
Fritz, W. (1935). Berechnung des maximale volume von dampfblasen. Physikalische Zeitschrift, 36, 379-384.
Gheitaghy, A. M., Saffari, H., & Mohebb, M. (2016). Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating. Experimental Thermal and Fluid Science, 76, 87–97. https://doi.org/10.1016/j.expthermflusci.2016.03.011
Gheitaghy, A. M., Saffari, H., & Zhang, G. Q. (2018). Effect of nanostructured microporous surfaces on pool boiling augmentation. Heat Transfer Engineering, 40, 762-771. https://doi.org/10.1080/01457632.2018.1442310
Gupta, S. K., & Misra, R. D. (2018). Experimental study of pool boiling heat transfer on copper surfaces with Cu-Al2O3 nanocomposite coatings. International Communications in Heat and Mass Transfer, 97, 47–55.  https://doi.org/10.1016/j.icheatmasstransfer.2018.07.004
Gupta, S. K., & Misra, R. D. (2019). Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance. Journal of Thermal Analysis and Calorimetry, 136, 1781–1793. https://doi.org/10.1007/s10973-018-7805-7
Hsu, C. C., & Chen, P. H. (2012). Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. International Journal of Heat and Mass Transfer, 55, 3713–3719. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.003
Hu, Y., Li, H., He, Y., Liu, Z., & Zhao, Y. (2017). Effect of nanoparticle size and concentration on boiling performance of SiO2 nanofluid. International Journal of Heat and Mass Transfer, 107, 820–828. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.090
Huang, C. K., Lee, C. W., & Wang, C. K. (2011). Boiling enhancement by TiO2 nanoparticle deposition. International Journal of Heat and Mass Transfer, 54, 4895–4903. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.001
Jun, S., Kim, J., You, S. M., & Kim, H. Y. (2016). Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water. International Journal of Heat and Mass Transfer, 103, 277–284. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.030
Jun, S., Ray, S. S., & Yarin, A. L. (2013). Pool boiling on nano-textured surfaces. International Journal of Heat and Mass Transfer, 62, 99–111. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.046
Kim, J. S., Girard, A., Jun, S., Lee, J., & You, S. M. (2018). Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces. International Journal of Heat and Mass Transfer, 118, 802–811. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.124
Kim, J., Seongchul, J., Laksnarain, R. & You, S. M. (2016). Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability. International Journal of Heatand Mass Transfer, 101, 992–1002. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.067
Kim, S. J., Bang, I. C., Buongiorno, J., & Hu, L. W. (2007). Surface wettability change during pool boiling of nanofluids and, its effect on critical heat flux. International Journal of Heat and Mass Transfer, 50, 4105–4116. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002
Kocamustafaogullari, G., & Ishii, M. (1983). Aireinterfacialeetdensite de sites de nucleation dans les systemes en ebullition. International Journal of Heat and Mass Transfer, 26, 1377–1387. https://doi.org/10.1016/S0017-9310(83)80069-6
Kwark, S. M., Kumar, R., Moreno, G., Yoo, J., & You, S. M. (2010). Pool boiling characteristics of low concentration nanofluids. International Journal of Heat and Mass Transfer, 53, 972–981. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018
Lu, M. C., Chen, R., Srinivasan, V., Carey, V. P., & Majumdar, A. (2011). Critical heat flux of pool boiling on Si nanowire array-coated surfaces. International Journal of Heat and Mass Transfer, 54, 5359–5367. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.007
Mao, L., Zhou, W., Hu, X., Yu, H., Zhang, G., Zhang, L., & Fu, R. (2020). Pool boiling performance and bubble dynamics on graphene oxide nanocoating surface. International Journal of Thermal Sciences, 147, 106154. https://doi.org/10.1016/j.ijthermalsci.2019.106154
Mogra, A., Pandey, P. K., & Gupta, K. K. (2021). Influence of surface wettability and selection of coating material for enhancement of heat transfer performance. Materials Today: Proceedings, 44, 4433-4438. https://doi.org/10.1016/j.matpr.2020.10.595
Mohammadi, N., Fadda, D., Choi, C. K., Lee, J., & You, S. M. (2018). Effects of surface wettability on pool boiling of water using super-polished silicon surfaces.  International Journal of Heat and Mass Transfer, 127, 1128–1137. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.122
Mori, S., & Okuyama, K. (2009). Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media. International Journal of Multiphase Flow, 35 (10), 946–951. https://doi.org/10.1016/j.ijmultiphaseflow.2009.05.003
Namaraa, R. J. M., Luptona, T. L., Lupoia, R., & Robinson, A. J. (2019). Enhanced nucleate pool boiling on copper-diamond textured surfaces. Applied Thermal Engineering, 162, 114145. https://doi.org/10.1016/j.applthermaleng.2019.114145
Nikolic, N. D. (2010). Fundamental aspects of copper electro-deposition in the hydrogen co-deposition range. Zaštita Materijala, 51, 197-203. https://cer.ihtm.bg.ac.rs/handle/123456789/725
Park, S. D., Lee, S. W., Kang, S., Kim, S. M., & Bang, I. C. (2012). Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments. Nuclear Engineering and Design, 252, 184–191. https://doi.org/10.1016/j.nucengdes.2012.07.016
Patil, C. M., Santhanam, K. S. V., Kandlikar, S. G. (2014). Development of a two-step electro-deposition process for enhancing pool boiling. International Journal of Heat and Mass Transfer, 79, 989–1001. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.062
Phan, H. T., Caney, N., Marty, P., Colasson, S., & Gavillet, J. (2009). Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. International Journal of Heat and Mass Transfer, 52, 5459–5471. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032
Rishi, A. M., Gupta, A., & Kandlikar, S. G. (2018). Improving aging performance of electrodeposited copper coatings during pool boiling. Applied Thermal Engineering, 140, 406–414. https://doi.org/10.1016/j.applthermaleng.2018.05.061
Rishi, A. M., Kandlikar, S. G., & Gupta, A. (2019). Improved wettability of graphene nanoplatelets (GNP)/copper porous coatings for dramatic improvements in pool boiling heat transfer. International Journal of Heat and Mass Transfer, 132, 462–472. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.169
Rohsenow, W. M. (1952). A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME, 74(6), 969-975. https://doi.org/10.1115/1.4015984
Saeidi, D., & Alemrajabi, A. A. (2013). Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces. International Journal of Heat and Mass Transfer, 60, 440–449. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.016
Saelim, N., Magaraphan, R., & Sreethawong, T. (2011). Preparation of sol–gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells. Energy Conversion and Management, 52, 815–2818. https://doi.org/10.1016/j.enconman.2011.02.016
Seo, H., Chu, J. H., Kwonb, S. Y., & Bang, I. C. (2015). Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72. International Journal of Heat and Mass Transfer, 82, 490–502. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.019
Shah, Y., Kim, H. G., Choi, W. W., & Kim, S. M. (2023). Experimental pool boiling study on novel multistage cross-flow porous structure using FC-72 for high-heat-flux electronic applications. International Journal of Heat and Mass Transfer, 213, 124270. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124270
Shi, B., Wang, Y. B., & Chen, K. (2015). Pool boiling heat transfer enhancement with copper nanowire arrays. Applied Thermal Engineering, 75, 115-121. https://doi.org/10.1016/j.applthermaleng.2014.09.040
Shi, J., Jia, X., Feng, D., Chen, Z., & Dang, C. (2020). Wettability effect on pool boiling heat transfer using a multiscale copper foam surface. International Journal of Heat and Mass Transfer, 146, 118726. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118726
Tang, Y., Tang, B., Li, Q., Qing, J., Lu, L., & Chen, K. (2013). Pool-boiling enhancement by novel metallic nanoporous surface. Experimental Thermal and Fluid Science, 44, 194–198. https://doi.org/10.1016/j.expthermflusci.2012.06.008
Tey, E., Hashim, M., & Ismail, I. (2015). Characterization of Cu-Al2O3 and Ni-Al2O3 nanocomposites electrodeposited on copper substrate. Materials Science Forum, 846, 471-478. http://dx.doi.org/10.4028/www.scientific.net/MSF.846.471
Ujereh, S., Fisher, T., & Mudawar, I. (2007). Effects of carbon nanotube arrays on nucleate pool boiling. International Journal of Heat and Mass Transfer, 50, 4023–4038. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.030
Vemuri, S., & Kim, K. J. (2005). Pool boiling of saturated FC-72 on nano-porous surface. International Communications in Heat and Mass Transfer, 32, 27–31. https://doi.org/10.1016/j.icheatmasstransfer.2004.03.020
Wang, C. H., & Dhir, V. K. (1993). Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. Journal of  Heat Transfer, 115(3), 659-669. https://doi.org/10.1115/1.2910737
Wang, C. Y., JI, W. T., Zhao, C. Y., Chen, L., & Qua, W. (2023a). Experimental determination of the role of roughness and wettability on pool-boiling heat transfer of refrigerant. International Journal of Refrigeration. https://doi.org/10.1016/j.ijrefrig.2023.06.014
Wang, Y. Q., Luo, J. L., Heng, Y., Mo, D. C., & Lyu, S. S. (2018). Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure. International Journal of Heat and Mass Transfer, 119, 333–342. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.080
Wang, Y., Wu, G., Xu, J., Chen, R., & Wang, H. (2023b). Effects of geometric arrangement on pool boiling heat exchange in the tubular bundle. Nuclear Engineering and Design, 402, 112110. https://doi.org/10.1016/j.nucengdes.2022.112110
Yeom, H., Sridharan, K., & Corradini, M. (2015). Bubble dynamics in pool boiling on nanoparticle-coated surfaces. Heat Transfer Engineering, 36(12), 1013–1027. https://doi.org/10.1080/01457632.2015.979116
Yim, K., Lee, J., Naccarato, B., & Kim, K. J. (2019). Surface wettability effect on nucleate pool boiling heat transfer with titanium oxide (TiO2) coated heating surface. International Journal of Heat and Mass Transfer, 133, 352–358. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.075
Zuber, N. (1959). Hydrodynamic aspects of boiling heat transfer. [thesis, United States Atomic Energy Commission], Technical Information Service. https://doi.org/10.2172/4175511
Zuber, N. (1963). Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. International Journal of Heat and Mass Transfer, 53-78. https://doi.org/10.1016/0017-9310(63)90029-2