URANS Simulation of Self-Recirculation Casing Treatment in a Transonic Compressor

Document Type : Regular Article


Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, 15875-4413, Iran



Time-accurate numerical calculations are performed to investigate the effect of air recirculation on NASA Rotor 37. An annular casing-mounted recirculation passageway is designed and located over the blades. Because the investigated rotor does not have any stator, the bleed air has a high circumferential velocity component (in the same direction of the rotor). Therefore, the injected air would have a high swirl component, reducing the injection's effectiveness. As a result, anti-swirl blades have been installed within the recirculation duct, to reduce flow swirl and improve injector effectiveness. Different anti-swirl vanes have been simulated in order to determine the best vanes in terms of minimum pressure loss and zero injection yaw angle (axial injection). Results show that these vanes can effectively turn the circulated fluid to the axial direction and provide a high velocity axial injection upstream of the rotor blades. As a result of the effective injection, the leakage flow moves downstream, improving stability by shifting the stalling point to lower mass flow rates. Because the injection port is close to the blade, the interaction of the passage shock and the injection port causes unsteadiness in the injection mass flow, which is discussed in the paper.


Main Subjects

Akhlaghi, M., Elder, R. L., & Ramsden, K. W. (2003, January). Effects of a vane-recessed tubular-passage passive stall control technique on a multistage, axial-flow compressor: results of tests on the first stage with the rear stages removed. Turbo Expo: Power for Land, Sea, and Air. https://doi.org/10.1115/GT2003-38301
Azimian, A. R., Elder, R. L., & McKenzie, A. B. (1990). Application of recess vaned casing treatment to axial flow fans, Journal of Turbomachinery, 112(1), 145-150. https://doi.org/10.1115/1.2927411
Dinh, C. T., Ma, S. B., & Kim, K. Y. (2017, June). Effects of a circumferential feed-back channel on aerodynamic performance of a single-stage transonic axial compressor. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers. https://doi.org/10.1115/GT2017-63536
Dunham, J. (1998). CFD validation for propulsion system components (la validation CFD des organes des propulseurs). Advisory Group For Aerospace Research And Development Neuilly-Sur-Seine (France).
Freeman, C., Wilson, A. G., Day, I. J., & Swinbanks, M. A. (1998). Experiments in active control of stall on an aeroengine gas turbine. Journal of Turbomachinery, 120(4), 637-647. https://doi.org/10.1115/1.2841773
Hathaway, M. D. (2002). Self-recirculating casing treatment concept for enhanced compressor performance. Conference Sponsors: International Gas Turbine Institute. https://doi.org/10.1115/GT2002-30368
Hwang, Y., & Kang, S. H. (2013). Numerical study on near-stall flow unsteadiness in an axial compressor with casing treatment. Journal of Mechanical Science and Technology27(8), 2375-2381. https://doi.org/10.1007/s12206-013-0622-9
Jahani, Z., Khaleghi, H., & Tabejamaat, S. (2022). Tip injection effects on a transonic centrifugal impeller with various tip clearances in the presence of inlet distortion. Journal of the Brazilian Society of Mechanical Sciences and Engineering44(9), 1-14. https://doi.org/10.1007/s40430-022-03714-5
Khaleghi, H. (2014). Effect of discrete endwall recirculation on the stability of a high-speed compressor rotor. Aerospace Science and Technology37, 130-137. https://doi.org/10.1016/j.ast.2014.05.009
Khaleghi, H. (2017). Parametric study of injector radial penetration on stalling characteristics of a transonic fan. Aerospace Science and Technology66, 112-118. https://doi.org/10.1016/j.ast.2017.02.020
Khaleghi, H. (2020). A new approach of endwall recirculation in axial compressors. Aerospace Science and Technology98, 105704. https://doi.org/10.1016/j.ast.2020.105704
Khaleghi, H., Heinrich, M., & Shahriyari, M. J. (2021). Circumferential casing treatment in a transonic fan. Amirkabir Journal of Mechanical Engineering, 53(7), 5-5. https://doi.org/10.22060/mej.2021.18660.6879
Khaleghi, H., Teixeira, J. A., Tousi, A. M., & Boroomand, M. (2008). Parametric study of injection angle effects on stability enhancement of transonic axial compressors. Journal of propulsion and power24(5), 1100-1107. https://doi.org/10.2514/1.34817
Khaleghi, H., Tousi, A. M., Boroomand, M., & Teixeira, J. A. (2007). Recirculation casing treatment by using a vaned passage for a transonic axial-flow compressor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy221(8), 1153-1162. https://doi.org/10.1243/09576509JPE444
Lim, H. S., Bae, H. J., Lim, Y. C., Song, S. J., Kang, S. H., & Yang, S. S. (2011). Injection profile effects on low speed axial compressor stability enhancement. Journal of Mechanical Science and Technology25(6), 1501-1507. https://doi.org/10.1007/s12206-011-0332-0
Puterbaugh, S. L., & Brendel, M. (1997). Tip clearance flow-shock interaction in a transonic compressor rotor. Journal of Propulsion and Power13(1), 24-30. https://doi.org/10.2514/2.5146
Reid, L., & Moore, R. D. (1978). Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor (No. NASA-TP-1337).
Reid, L., & Moore, R. D. (1979, January). Experimental study of low aspect ratio compressor blading. Ann. Intern. Gas Turbine Conf. (No. NASA-TM-79280).
Strazisar, A. J., Bright, M. M., Thorp, S., Culley, D. E., & Suder, K. L. (2004, January). Compressor stall control through endwall recirculation. Turbo Expo: Power for Land, Sea, and Air. https://doi.org/10.1115/GT2004-54295
Suder, K. L., Hathaway, M. D., Thorp, S. A., Strazisar, A. J., & Bright, M. B. (2001). Compressor stability enhancement using discrete tip injection. Journal of Turbomachinery, 123(1), 14-23. https://doi.org/10.1115/1.1330272
Talebnezhad, M. (2017).Numerical study of endwall recirculation on the performance of a high speed compressor [MSc Thesis, Amirkabir University of Technology].
Tang, Q., Wu, H., Li, J., Lou, H., & Yang, C. (2022). Performance optimization of centrifugal compressors based on throughflow model. Arabian Journal for Science and Engineering47(12), 16439-16450. https://doi.org/10.1007/s13369-022-06736-2
Vo, H. D., Tan, C. S., & Greitzer, E. M. (2008). Criteria for spike initiated rotating stall. Journal of Turbomachinery, 130(1), 011023. https://doi.org/10.1115/1.2750674
Vuong, T. D., & Kim, K. Y. (2021). Design optimization of a dual-bleeding recirculation channel to enhance operating stability of a transonic axial compressor. Energies15(1), 159. https://doi.org/10.3390/en15010159
Wang, W., Chu, W., & Zhang, H. (2018). Mechanism study of performance enhancement in a subsonic axial flow compressor with recirculating casing treatment. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering232(4), 680-693. https://doi.org/10.1177/0954410016687140
Weigl, H. J., Paduano, J. D., Frechette, L. G., Epstein, A. H., Greitzer, E. M., Bright, M. M., & Strazisar, A. J. (1997). Active stabilization of rotating stall and surge in a transonic single stage axial compressor. American Society of Mechanical Engineers. https://doi.org/10.1115/97-GT-411
Xiang, H., Chen, J., Cheng, J., Niu, H., Liu, Y., & Song, X. (2021). Aerodynamic improved design and optimization for the rear stage of a High-load axial compressor. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(3), 1-20. https://doi.org/10.1007/s40430-021-02848-2
Yan, S., & Chu, W. (2020). Influence of self-circulating casing treatment with double-bleed ports structure on compressor performance. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering234(11), 1743-1756. https://doi.org/10.1177/0954410020918405
Yang, C., Wu, H., & Liang, Y. (2019). A novel three-dimensional inverse method for axial compressor blade surface design. Arabian Journal for Science and Engineering44, 10169-10179. https://doi.org/10.1007/s13369-019-04083-3
Zhou, J., Hou, A., & Zhou, S. (2010). Effects of injection frequency on the rotor stall margin. Science in China Series E: Technological Sciences53(1), 213-219. https://doi.org/10.1007/s11431-010-0033-4