Document Type : Regular Article

Authors

1 Zhejiang Juhua Technology Center Co., Ltd, Quzhou 324004, PR China

2 College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, PR China

3 Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, PR China

10.47176/jafm.17.05.2193

Abstract

Droplet evaporation coupled with gravity and surface tension on a wall with the radial temperature gradients is numerically studied with the arbitrary Lagrangian‒Eulerian method. The influence of the wall temperature distribution on the droplet evaporation process, which is less considered in the existing literature, is mainly discussed. The droplet temperature coefficient of the surface tension and the viscosity on the droplet profile evolution, flow, heat and mass transfer characteristic are also discussed. The results indicate that the droplets become flat first and then retract under the gravity and Marangoni convection during droplet evaporation. There are two high-velocity regions inside the evaporating droplet. One region is at the droplet axis, in which fluid flows to the wall from the droplet top. The other region is near the droplet surface, where fluid flows to the droplet top. There are turning points on the two sides of which the influence of wall temperature distribution on the ratio between the droplet height and the radius of the three-phase contact line (h/Rc), the velocity in the droplet and the surface temperature converts. All of them are larger before the turning point when the wall temperature slope is positive. After the turning point, these are reversed. For both h/Rc and average surface temperature, there is one turning point, which are t*=1.63×10-4 and t*=1.05×10-4, respectively. For maximum velocity and average velocity in droplet, there are two turning points, which are both t*=1.63×10-4 and t*=1.7×10-5. The droplet morphology changes more obviously when it is with a greater temperature coefficient of surface tension. Moreover, the turning point is delayed from t*=6.41×10-5 while α is 8 K/m to t*=7.91×10-5 while α is -8 K/m, which indicates that the negative wall temperature slope is beneficial to inhibit the Marangoni effect on droplet evaporation.

Keywords

Main Subjects

#### References

Albernaz, D. L., Amberg, G., & Do-Quang, M. (2016). Simulation of a suspended droplet under evaporation with Marangoni effects. International Journal of Heat and Mass Transfer, 97, 853-860. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.073.
Al-Sharafi A., Sahin, A. Z., Yilbas, B. S., & Shuja, S. Z. (2016a). Marangoni convection flow and heat transfer characteristics of water-CNT nanofluid droplets. Numerical Heat Transfer, Part A: Applications, 69, 763-780. https://doi.org/10.1080/10407782.2015.1090809.
Al-Sharafi, A., Yilbas, B. S., Ali, H., & Sahin, A. Z. (2016b). Internal fluidity of a sessile droplet with the presence of particles on a hydrophobic surface. Numerical Heat Transfer, Part A: Applications, 70, 1118-1140. https://doi.org/10.1018/10407782.2016.1230416.
Barmi, M. R., & Meinhart, C. D. (2014). Convective flows in evaporating sessile droplets. Journal of Physical Chemistry B, 118, 2414-2421. https://doi.org/10.1021/jp408241f.
Bi, S. S., Cui, J. W., Ma, L. J., Zhao, G. J., & Wu, J. T. (2016). Thermophysical properties of HFE7100 and HFE7500. Ciesc Journal, 67, 1680-1686. https://doi.org/10.11949/j.issn.0438-1157.20151505.
Bi, W., Wu, X., & Yeow, E. K. (2012). Unconventional multiple ring structure formation from evaporation-induced self-assembly of polymers. Langmuir, 28, 11056-11063. https://doi.org/10.1021/la300697w
Chandramohan, A., Dash, S., Weibel, J. A., Chen, X., & Garimella, S. V. (2016). Marangoni convection in evaporating organic liquid droplets on a nonwetting substrate. Langmuir, 32, 4729-4735. https://doi.org/10.1021/acs.langmuir.6b00307.
Chang, S. T., & Velev, O. D. (2006). Evaporation-induced particle microseparations inside droplets floating on a chip. Langmuir, 22, 1459-1468. https://doi.org/10.1021/la052695t.
Cheng, P., & Wu, H. Y. (2006). Mesoscale and microscale phase-change heat transfer. Advances in heat transfer, 39, 461-563. https://doi.org/10.1016/S0065-2717(06)39005-3
Dai, B. M., Qi, H. F., Liu, S. C., Zhong, Z. F., Li, H. L., Song, M. J., Ma, M. Y., & Sun, Z. L. (2019). Environmental and economical analyses of transcritical CO2 heat pump combined with direct dedicated mechanical subcooling (DMS) for space heating in China. Energy Conversion and Management, 198, 111317. https://doi.org/10.1016/j.enconman.2019.01.119
Dai, B. M., Wang, Q., Liu, S. C., Wang, D. B., Yu, L. Q., Li, X. H., & Wang, Y. Y. (2023). Novel configuration of dual-temperature condensation and dual-temperature evaporation high-temperature heat pump system: Carbon footprint, energy consumption, and financial assessment. Energy Conversion and Management, 292, 117360. https://doi.org/10.1016/j.enconman.2023.117360
Deegan, R. D., Bakajin, O., Dupont, T., Huber, G., Nagel, S., & Witten, T. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389, 827-829. https://doi.org/10.1038/39827.
Deegan, R. D., Bakajin, O., Dupont, T., Huber, G., Nagel, S., & Witten, T. (2000). Contact line deposits in an evaporating drop. Physical Review E, 62, 756-765. https://doi.org/10.1103/PhysRevE.62.756.
Deegan, R. D. (2000). Pattern formation in drying drops. Physical Review E, 61, 475-485. https://doi.org/10.1103/PhysRevE.61.475.
Erbil, H. Y., Mchale, G., & Newton, M. I. (2002). Drop evaporation on solid surfaces: constant contact angle mode. Langmuir, 18, 2636-2641. https://doi.org/10.1021/la011470p.
Gao, M., Kong, P., & Zhang, L. X. (2018). Evaporation dynamics of different sizes sessile droplets on hydrophilic and hydrophobic heating surface under constant wall heat fluxes conditions. International Communications in Heat and Mass Transfer, 93, 93-99. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.007
Girard, F., Antoni, M., Faure, S., & Steinchen, A. (2006). Evaporation and Marangoni driven convection in small heated water droplets. Langmuir, 22, 11085-11091. https://doi.org/10.1021/la061572l.
Girard, F., Antoni, M., & Sefiane, K. (2008). On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir, 24, 9207-9210. https://doi.org/10.1021/la801294x
Guéna, G., Allançon, P., & Cazabat, A. M. (2007). Receding contact angle in the situation of complete wetting: Experimental check of a model used for evaporating droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300, 307-314. https://doi.org/10.1016/j.colsurfa.2007.02.009.
Hu, H., & Larson, R. G. (2005). Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21, 3972-3980. https://doi.org/10.1021/la0475270.
Hu, H., & Larson, R. G. (2002). Evaporation of a sessile droplet on a substrate. The Journal of physiacal chemistry, 106, 1334-1344. https://doi.org/10.1021/jp0118322.
Hu, H., & Larson, R. G. (2006). Marangoni effect reverses coffee-ring depositions. Journal of Physical Chemistry B, 110, 7090-7094. https://doi.org/10.1021/jp0609232.
Hu, W. R., & Imaishi N. (2000). Thermocapillary flow in an annular liquid layer painted on a moving fiber. International Journal of Heat and Mass Transfer, 43, 4457-4466. https://doi.org/10.1016/S0017-9310(00)00026-0.
Huang, Y., Zhang, C., & Meng, S. (2022). Molecular origin of fast evaporation at the solid–water–vapor line in a sessile droplet. Nanoscale, 14, 2729-2734. https://doi.org/10.1039/D1NR07479B
Kus, A., Isik, Y., Cakir, M. C., Coşkun, S., & Özdemir, K. (2015). Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting. Sensors, 15, 1274-1291. https://doi.org/10.3390/s150101274.
Kita, Y., Askounis, A., Kohno, M., Takata, Y., Kim, J., & Sefiane, K. (2016). Induction of Marangoni convection in pure water drops. Applied. Physics Letters, 109, 171602. https://doi.org/10.1063/1.4966542.
Liu, B., Li, Z., Bi, L., Theodorakis, P. E., Liu, Y., Song, J., Chen, A., Zhu Z., & Song, J. (2023). Characteristics of HFE7100 droplets evaporation on substrates with different thermal conductivity. Thermal Science and Engineering Progress, 40, 101771. https://doi.org/10.1016/j.tsep.2023.101771
Machrafi, H., Lyulin, Y., Iorio, C. S., Kabov, O., & Dauby, P. C. (2018). Numerical parametric study of the evaporation rate of a liquid under a shear gas flow: Experimental validation and the importance of confinement on the convection cells and the evaporation rate. International Journal of Heat and Fluid Flow, 702, 8-19. https://doi.org/10.1016/j.ijheatfluidflow.2018.05.003.
Manetti, L. L., Ribatski, G., de Souza, R. R., & Cardoso, E. M. (2020). Pool boiling heat transfer of HFE-7100 on metal foams. Experimental Thermal and Fluid Science, 113, 110025. https://doi.org/10.1016/j.expthermflusci.2019.110025
McHale, G., Rowan, S. M., Newton, M. I., & Banerjee, M. K. (1998). Evaporation and the wetting of a low-energy solid surface. The Journal of Physical Chemistry B, 102, 1964-1967. https://doi.org/10.1021/jp972552i.
Nerger, B. A., Brun, P. T., & Nelson, C. M. (2020). Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Science advances, 6, eaaz7748. https://doi.org/10.1126/sciadv.aaz7748
Quo, K. H., Uemura, T., & Yang, W. J. (1985). Reflection-interference method to determine droplet profiles. Applied Optics, 24, 2655-2659. https://doi.org/10.1364/ao.24.002655.
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J., & Stone, H. A. (2007). Influence of substrate conductivity on circulation reversal in evaporating drops. Physical Review letters, 99, 234502. https://doi.org/10.1103/PhysRevLett.99.234502.
Savino, R., & Fico, S. (2004). Transient Marangoni convection in hanging evaporating drops. Physics of Fluids, 16, 3738-3754. https://doi.org/10.1063/1.1772380.
Savino, R., Paterna, D., & Favaloro, N. (2002). Buoyancy and Marangoni effects in an evaporating drop. Journal of Thermophysics and Heat Transfer, 16, 562-574. https://doi.org/10.2514/2.6716.
Scardovelli, R., & Zaleski, S. (1999). Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 31, 567-603. https://doi.org/10.1146/annurev.fluid.31.1.567
Scriven, L. E., & Sternling, C. V. (1960). The marangoni effects. Nature, 187, 186-188. https://doi.org/10.1038/187186a0.
Sefiane, K., Moffat, J. R., Matar, O. K., & Craster, R. V. (2008). Self-excited hydrothermal waves in evaporating sessile drops. Applied Physics Letters93, 074103. https://doi.org/10.1063/1.2969072
Shi, W., Tang, K., Ma, J., Jia, Y., Li, H., & Feng, L. (2017). Marangoni convection instability in a sessile droplet with low volatility on heated substrate. International Journal of Thermal Sciences, 117, 274-286. https://doi.org/10.1016/j.ijthermalsci.2017.04.007.
Shi, X., Lin, L., Chen, S., Chao, S., Zhang, W., & Meldrum, D. (2011). Real-time PCR of single bacterial cells on an array of adhering droplets. Lab on a Chip, 11, 2276-2281. https://doi.org/10.1039/c1lc20207c.
Song, H., Lee, Y., Jin, S., S., Kim, H. Y., & Yoo, J. Y. (2011). Prediction of sessile drop evaporation considering surface wettability. Microelectronic Engineering, 88, 3249-3255. https://doi.org/10.1016/j.cis.2013.08.006
Strizhak, P. A., Volkov, R. S., Misyura, S. Y., Lezhnin, S. I., & Morozov, V. S. (2018). The role of convection in gas and liquid phases at droplet evaporation. International Journal of Thermal Sciences, 134, 421-439. https://doi.org/10.1016/j.ijthermalsci.2018.08.031.
Tekin, E., de Gans, B. J., & Schubert, U. S. (2004). Ink jet printing of polymers from single dots to thin film libraries. Journal of Materials chemistry, 14, 2627-2632. https://doi.org/10.1039/b407478e.
Thiele, U., & Knobloch, E. (2004) Thin liquid films on a slightly inclined heated plate. Physica D: Nonlinear Phenomena, 190, 213-248. https://doi.org/10.1016/j.physd.2003.09.048.
Tsoumpas, Y., Dehaeck, S., Rednikov, A., & Colinet, P. (2015). Effect of marangoni flows on the shape of thin sessile droplets evaporating into air. Langmuir, 31, 13334-13340. https://doi.org/10.1021/acs.langmuir.5b02673.
Wang, H. T., Wang, Z. B., Huang, L. M., Mitra, A., & Yan, Y. S. (2001). Surface patterned porous films by convection-assisted dynamic self-assembly of zeolite nanoparticles. Langmuir, 17, 2572-2574. https://doi.org/10.1021/la0102509.
Wang, T. S., & Shi, W. Y. (2020). Transition of Marangoni convection instability patterns during evaporation of sessile droplet at constant contact line mode. International Journal of Heat and Mass Transfer, 148, 119138. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119138.
Xu, X., Di, Y., & Yu, H. (2018). Sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for moving contact lines. Journal of Fluid Mechanics, 849, 805-833. https://doi.org/10.1017/jfm.2018.428
Xu, X. F., Luo, J. B., & Guo, D. (2012). Radial-velocity profile along the surface of evaporating liquid droplets. Soft Matter, 8, 5797-5803. https://doi.org/10.1039/c2sm25319d.
Xu, Y., Zhang, N., Yang, W. J., & Vest, C. M. (1984). Optical measurement of profile and contact angle of liquids on transparent substrates. Experiments in Fluids, 2, 142-144. https://doi.org/10.1007/bf00296430.
Yang, K., Hong, F. J., & Cheng, P. (2014). A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary Lagrangian–Eulerian formulation. International Journal of Heat and Mass Transfer, 70, 409-420. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.017.
Yin, J., Ye, H., Xia, X., Yi, L., & Wang, T. (2023). Methanol–water mixture evaporation-induced self-assembly of ZIF-8 particles. Chemical Communications, 59, 11508-11511. https://doi.org/10.1039/D3CC03357K
Zhang, J., Huang, H., & Lu, X. Y. (2019). Pinning–depinning mechanism of the contact line during evaporation of nanodroplets on heated heterogeneous surfaces: A molecular dynamics simulation. Langmuir, 35, 6356-6366. https://doi.org/10.1021/acs.langmuir.9b00796
Zhang, M., Liu, Z. L., Ma, G. Y., & Cheng, S. Y. (2009). Numerical simulation and experimental verification of a flat two-phase thermosiphon. Energy Conversion and Management, 50, 1095-1100. https://doi.org/10.1016/j.enconman.2008.12.001.
Zhang, Z., Li, J., & Jiang, P. X. (2013). Experimental investigation of spray cooling on flat and enhanced surfaces. Applied Thermal Engineering, 51, 102-111. https://doi.org/10.1016/j.applthermaleng.2012.08.057.
Zhu, J. L., Shi, W. Y., & Feng, L. (2019). Bénard-Marangoni instability in sessile droplet evaporating at constant contact angle mode on heated substrate. International Journal of Heat and Mass Transfer, 134, 784-795. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.082.
Zhu, J. L., & Shi, W. Y. (2023). Instability patterns of Marangoni flow in evaporating droplets on lyophobic surface. International Communications in Heat and Mass Transfer, 141, 106598. https://doi.org/10.1016/j.icheatmasstransfer.2022.106598