Effect of Equivalence Ratio on Flame Morphology, Thermal and Emissions Characteristics of Inverse Diffusion Porous Burner

Document Type : Regular Article


Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395007, India



The diffusion porous media combustion is one possible way to eliminate the drawbacks of the existing combustion systems. Inverse diffusion flame (IDF) has features of both premixed and non-premixed flames. To integrate the advantages of porous media combustion with IDF, inverse diffusion porous (IDP) medium burner is tested for change in flame morphology and emissions at different equivalence ratio (ɸ). The porous media located at the exit of IDF burner has potential to deliver minimum flame length with low emissions. Flame appearance, flame height, flame zones etc. and emissions are experimentally investigated. Methane is used as fuel. Visible flame height is captured digitally and evaluated using ImageJ software. Central plane flame temperature is measured experimentally. CO and NOX emissions are recorded with Testo-340 flue gas analyser. The use of porous media at flame base is beneficiary in terms of achieving better air-fuel mixing and radial diffusion of air-fuel mixture. This reduces flame height with porous medium at all range of ɸ. Increase in ɸ reduces CO and enhances NOX emissions. Porous media reduces CO by 75 % and NOX by 60 %. Inverse diffusion porous medium burner emits lowest emissions in rich conditions. 


Main Subjects

Brohez, S., Delvosalle, C., & Marlair, G. (2004). A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires. Fire Safety Journal, 39(5), 399-411. https://doi.org/10.1016/j.firesaf.2004.03.002 
Dekhatawala, A., Bhale, P. V., & Shah, R. (2023). Experimental investigation on effect of height and pore density of porous medium on flame and emission characteristics of inverse diffusion combustor. Thermal Engineering, (In press).
Dobrego, K. V., Kozlov, I. M., Zhdanok, S. A., & Gnesdilov, N. N. (2001). Modeling of diffusion filtration combustion radiative burner. International Journal of Heat and Mass Transfer, 44(17), 3265–3272. https://doi.org/10.1016/S0017-9310(00)00343-4
Durst, F., & Weclas, M. (2001). A new type of internal combustion engine based on the porous-medium combustion technique. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 215(1), 63–81. https://doi.org/10.1243/0954407011525467
Endo Kokubun, M. A., Fachini, F. F., & Matalon, M. (2017). Stabilization and extinction of diffusion flames in an inert porous medium. Proceedings of the Combustion Institute, 36(1), 1485–1493. https://doi.org/10.1016/j.proci.2016.07.004
Fenimore, C. P. (1971). Formation of nitric oxide in premixed hydrocarbon flames. Symposium (International) On Combustion, Elsevier. https://doi.org/10.1016/S0082-0784(71)80040-1
Hayashi, T. C., Malico, I., & Pereira, J. C. F. (2004). Three-dimensional modelling of a two-layer porous burner for household applications. Computers and Structures, 82(17–19), 1543–1550. https://doi.org/10.1016/j.compstruc.2004.03.050
Huang, Y., Chao, C. Y. H., & Cheng, P. (2002). Effects of preheating and operation conditions on combustion in a porous medium. International Journal of Heat and Mass Transfer, 45, 4315–4324. https://doi.org/10.1016/S0017-9310(02)00137-0
Hupa, M., Backman, R., & Boström, S. (1989). Nitrogen oxide emissions of boilers in Finland. JAPCA, 39(11), 1496-1501. https://doi.org/10.1080/08940630.1989.10466644
Ikeda, Y., Kojima, J., & Hashimoto, H. (2002). Local chemiluminescence spectra measurements in a high-pressure laminar methane/air premixed flame. Proceedings of the Combustion Institute, 29(2), 1495-1501. https://doi.org/10.1016/S1540-7489(02)80183-3
Jugjai, S., & Pongsai, C. (2007). Liquid fuels-fired porous burner. Combustion Science and Technology, 179(9), 1823–1840. https://doi.org/10.1080/00102200701260179
Kamal, M. M., & Mohamad, A. A. (2005). Enhanced radiation output from foam burners operating with a nonpremixed flame. Combustion and Flame, 140(3), 233–248. https://doi.org/10.1016/J.COMBUSTFLAME.2004.12.001
Kamiuto, K., & Miyamoto, S. (2004). Diffusion flames in plane-parallel packed beds. International Journal of Heat and Mass Transfer, 47(21), 4593–4599. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2003.08.032
Kamiuto, K., & Ogawa, T. (2012). Diffusion flames in cylindrical packed beds. Journal of Thermophysics and Heat Transfer, 11(4), 585–587. https://doi.org/10.2514/2.6284
Kaplan, M., & Hall, M. J. (1995). The combustion of liquid fuels within a porous media radiant burner. Experimental Thermal and Fluid Science, 11(1), 13–20. https://doi.org/10.1016/0894-1777(94)00106-I
Khaleghi, M., Hosseini, S. E., Wahid, M. A., & Mohammed, H. A. (2015). The effects of air preheating and fuel/air inlet diameter on the characteristics of vortex flame. Journal of Energy, 2015. https://doi.org/10.1155/2015/397219
Laphirattanakul, P., Laphirattanakul, A., & Charoensuk, J. (2016). Effect of self-entrainment and porous geometry on stability of premixed LPG porous burner. Applied Thermal Engineering, 103, 583–591. https://doi.org/10.1016/j.applthermaleng.2016.03.079
Li, H., Shi, J., Mao, M., & Liu, Y. (2019). Experimental and numerical studies on combustion characteristics of N2-diluted CH4 and O2 diffusion combustion in a packed bed. Royal Society open science, 6(9), 190492. https://doi.org/10.1098/rsos.190492   
Lin, B., Dai, H., Wang, C., Li, Q., Wang, K., & Zheng, Y. (2014). Combustion characteristics of low concentration coal mine methane in divergent porous media burner. International Journal of Mining Science and Technology, 24(5), 671–676. https://doi.org/10.1016/j.ijmst.2014.03.027
Liu, H., Wu, D., Xie, M., Liu, H., & Xu, Z. (2019). Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium. Applied Thermal Engineering, 150, 445–455. https://doi.org/10.1016/j.applthermaleng.2018.12.155
Miao, J., Leung, C. W., Cheung, C. S., Huang, Z. H., & Zhen, H. S. (2016). Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame. Energy, 104, 284-294. https://doi.org/10.1016/j.energy.2016.03.114
Mohamad, A. A. (2005). Combustion in porous media: fundamentals and applications. Transport phenomena in porous media III (pp. 287-304). Pergamon. https://doi.org/10.1016/B978-008044490-1/50015-6
Ning, D., Liu, Y., Xiang, Y., & Fan, A. (2017). Experimental investigation on non-premixed methane/air combustion in Y-shaped meso-scale combustors with/without fibrous porous media. Energy Conversion and Management, 138, 22–29. https://doi.org/10.1016/j.enconman.2017.01.065
Patel, V., & Shah, R. (2018). Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl. Applied Thermal Engineering, 137, 377-385. https://doi.org/10.1016/j.applthermaleng.2018.03.105
Peng, Q., Jiaqiang, E., Chen, J., Zuo, W., Zhao, X., & Zhang, Z. (2018). Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy Conversion and Management, 155, 276–286. https://doi.org/10.1016/j.enconman.2017.10.095
Qiu, K., & Hayden, A. C. S. (2007). Thermophotovoltaic power generation systems using natural gas-fired radiant burners. Solar Energy Materials and Solar Cells, 91(7), 588–596. https://doi.org/10.1016/j.solmat.2006.11.011
Richardson, J. T., Peng, Y., & Remue, D. (2000). Properties of ceramic foam catalyst supports: pressure drop. Applied Catalysis A: General, 204(1), 19-32. https://doi.org/10.1016/S0926-860X(00)00508-1
Sahraoui, M., & Kavtany, M. (1994). Direct simulation vs volume-averaged treatment of adiabatic, premixed flame in a porous medium. International Journal of Heat and Mass Transfer, 37(18), 2817-2834. https://doi.org/10.1016/0017-9310(94)90338-7
Sathe, S. B., Peck, R. E., & Tong, T. W. (1990). A numerical analysis of heat transfer and combustion in porous radiant burners. International Journal of Heat and Mass Transfer, 33(6), 1331–1338. https://doi.org/10.1016/0017-9310(90)90262-S
Shi, J., Liu, Y., Liu, Y., Mao, M., Xia, Y., Ma, R., & Xu, Y. (2018). An experimental study on coflow diffusion combustion in a pellet-packed bed with different bed lengths. Royal Society Open Science, 5(8). https://doi.org/10.1098/rsos.172027
Shi, J., Liu, Y., Mao, M., Lv, J., Wang, Y., & He, F. (2019). Experimental and numerical studies on the effect of packed bed length on CO and NOx emissions in a plane-parallel porous combustor. Energy, 181, 250–263. https://doi.org/10.1016/j.energy.2019.05.141
Suo, S., Shen, Z., Shi, J., Chen, Z., Zhang, Y., Jiang, L., Zhang, Y., Qi, H., & Xie, M. (2022). Wake flow and flame characteristics in the porous media with different surface combustion states: An experimental study. Chemical Engineering Science, 257, 117677. https://doi.org/10.1016/J.CES.2022.117677
Trimis, D., & Durst, F. (1996). Combustion in a porous medium-advances and applications. Combustion Science and Technology, 121(1–6), 153–168. https://doi.org/10.1080/00102209608935592
Wang, H., Wei, C., Zhao, P., & Ye, T. (2014). Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion. Energy, 72, 195–200. https://doi.org/10.1016/j.energy.2014.05.024
Weinberg, F. J. (1971). Combustion temperatures: The future? Nature, 233(5317), 239–241. https://doi.org/10.1038/233239a0
Wu, D., Liu, H., Xie, M., Liu, H., & Sun, W. (2012). Experimental investigation on low velocity filtration combustion in porous packed bed using gaseous and liquid fuels. Experimental Thermal and Fluid Science, 36, 169–177. https://doi.org/10.1016/j.expthermflusci.2011.09.011
Zhang, J. C., Cheng, L. M., Zheng, C. H., Luo, Z. Y., & Ni, M. J. (2013). Development of non-premixed porous inserted regenerative thermal oxidizer. Journal of Zhejiang University: Science A, 14(9), 671–678. https://doi.org/10.1631/JZUS.A1300198/FIGURES/8
Zhen, H. S., Choy, Y. S., Leung, C. W., & Cheung, C. S. (2011). Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner. Applied Energy, 88(9), 2917-2924. https://doi.org/10.1016/j.apenergy.2011.02.040
  • Received: 07 November 2023
  • Revised: 22 January 2024
  • Accepted: 01 February 2024
  • Available online: 27 March 2024