Research on Active Flow Control Method of NACA0012 Airfoil with Traveling Wave Structure

Document Type : Regular Article

Authors

1 Shanghai key laboratory of multiphase flow and heat transfer of power engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2 National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Xi'an, 710072, China

10.47176/jafm.17.6.2301

Abstract

Traveling wave is an innovative active flow control technique that can remarkably mitigate flow separation. This paper employs numerical simulation to examine how traveling wave structures affect the NACA0012 airfoil. The traveling wave structure is situated at 0.5%c from the leading edge. In the chord direction, its projection length is 0.1c. Through numerical simulation, the impacts of dimensionless length-width ratio and velocity of traveling wave on flow separation are investigated, and the relationship between the traveling wave's optimal parameters and angle of attack is explored. The outcomes demonstrate that traveling waves with suitable length-width ratios and velocities can effectively suppress flow separation. When AoA=16°, traveling wave airfoil with dimensionless velocity U=1.1 and length-width ratio A=1 achieves the best performance, and its lift-drag ratio is 9.24 times that of the original NACA0012 airfoil. The optimal dimensionless length-width ratio and velocity of the traveling wave airfoil are associated with the angle of attack, and different parameters need to be chosen at various angles of attack to attain optimum effect.

Keywords

Main Subjects


Atik, H., Kim, C. Y., Van Dommelen, L. L., & Walker, J. D. A. (2005). Boundary-layer separation control on a thin airfoil using local suction. Journal of Fluid Mechanics535, 415-443. https://doi.org/10.1017/S002211200500501X
Aubrun, S., Leroy, A., & Devinant, P. (2017). A review of wind turbine-oriented active flow control strategies. Experiments in Fluids58, 1-21. 10.1007/s00348-017-2412-0
Bhavsar, H., Roy, S., & Niyas, H. (2023). Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration. Energy263, 125666. https://doi.org/10.1016/j.energy.2022.125666
Chakroun, W., Al-Mesri, I., & Al-Fahad, S. (2004). Effect of surface roughness on the aerodynamic characteristics of a symmetrical airfoil. Wind Engineering28(5), 547-564. https://doi.org/10.1260/0309524043028136
Di, G., Wu, Z., & Huang, D. (2017). The research on active flow control method with vibration diaphragm on a NACA0012 airfoil at different stalled angles of attack. Aerospace Science and Technology69, 76-86.https://doi.org/10.1016/j.ast.2017.06.020
Genç, M. S., Koca, K., Demir, H., & Aç─▒kel, H. H. (2020). Traditional and new types of passive flow control techniques to pave the way for high maneuverability and low structural weight for UAVs and MAVs. Autonomous Vehicles, 131-160. 10.5772/intechopen.90552
Gilarranz, J. L., Traub, L. W., & Rediniotis, O. K. (2005). A new class of synthetic jet actuators-part II: application to flow separation control. Journal of Fluids Engineering, 127(2), 377-387. https://doi.org/10.1115/1.1882393
Khalil, Y., Tenghiri, L., Abdi, F., & Bentamy, A. (2020). Improvement of aerodynamic performance of a small wind turbine. Wind Engineering44(1), 21-32. https://doi.org/10.1177/0309524X19849847
Kim, S. H., & Kim, K. Y. (2020). Effects of installation location of fluidic oscillators on aerodynamic performance of an airfoil. Aerospace Science and Technology99, 105735. https://doi.org/10.1016/j.ast.2020.105735
Kral, L. D. (2000). Active flow control technology. ASME Fluids Engineering Technical Brief, 1-28.
Lee, T., & Gerontakos, P. (2004). Investigation of flow over an oscillating airfoil. Journal of Fluid Mechanics512, 313-341. https://doi.org/10.1017/S0022112004009851
Liu, Q., Miao, W., Li, C., Hao, W., Zhu, H., & Deng, Y. (2019). Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT. Energy189, 116271. https://doi.org/10.1016/j.energy.2019.116271
Luo, D. H., Sun, X. J., Huang, D. G., & Wu, G. Q. (2011). Flow control effectiveness of synthetic jet on a stalled airfoil. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225(9), 2106-2114.https://doi.org/10.1177/0954406211407255
Mazaheri, K., Omidi, J., & Kiani, K. C. (2016). Simulation of DBD plasma actuator effect on aerodynamic performance improvement using a modified phenomenological model. Computers & Fluids140, 371-384. https://doi.org/10.1016/j.compfluid.2016.10.015
Menter, F. R. (1993). Zonal two equation k-ω turbulence models for aerodynamic flows. 24th Fluid Dynamics Conference. Orlando, Florida. 10.2514/6.1993-2906 
Ni, Z., Dhanak, M., & Su, T. C. (2019). Improved performance of a slotted blade using a novel slot design. Journal of Wind Engineering and Industrial Aerodynamics189, 34-44. 10.1016/j.jweia.2019.03.018
Petz, R., & Nitsche, W. (2007). Active separation control on the flap of a two-dimensional generic high-lift configuration. Journal of Aircraft44(3), 865-874. https://doi.org/10.2514/1.25425
Portal-Porras, K., Fernandez-Gamiz, U., Zulueta, E., Garcia-Fernandez, R., & Berrizbeitia, S. E. (2023). Active flow control on airfoils by reinforcement learning. Ocean Engineering, 287, 115775. https://doi.org/10.1016/j.oceaneng.2023.115775
Rabault, J., Kuchta, M., Jensen, A., Réglade, U., & Cerardi, N. (2019). Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. Journal of fluid mechanics, 865, 281-302. https://doi.org/10.1017/jfm.2019.62 
Shan, H., Jiang, L., Liu, C., Love, M., & Maines, B. (2008). Numerical study of passive and active flow separation control over a NACA0012 airfoil. Computers & Fluids37(8), 975-992. https://doi.org/10.1016/j.compfluid.2007.10.010
Vinuesa, R., Lehmkuhl, O., Lozano-Durán, A., & Rabault, J. (2022). Flow control in wings and discovery of novel approaches via deep reinforcement learning. Fluids, 7(2), 62. https://doi.org/10.3390/fluids7020062
Vorobiev, A., Rennie, R. M., & Jumper, E. J. (2013). Lift enhancement by plasma actuators at low Reynolds numbers. Journal of Aircraft50(1), 12-19. https://doi.org/10.2514/1.C031249
Wang, H., Jiang, X., Chao, Y., Li, Q., Li, M., Zheng, W., & Chen, T. (2019a). Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine. Energy182, 988-998. 10.1016/j.energy.2019.06.096
Wang, H., Zhang, B., Qiu, Q., & Xu, X. (2017). Flow control on the NREL S809 wind turbine airfoil using vortex generators. Energy118, 1210-1221. 10.1016/j.energy.2016.11.003
Wang, W., Breard, C., & Sun, Y. (2019b). Numerical study of the high-lift aerodynamic characteristics of dropped hinge flap coupled with drooped spoiler. The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018) 9th (pp. 211-226). Springer Singapore. https://doi.org/10.1007/978-981-13-3305-717
Ye, X., Hu, J., Zheng, N., & Li, C. (2023). Numerical study on aerodynamic performance and noise of wind turbine airfoils with serrated gurney flap. Energy262, 125574. https://doi.org/10.1016/j.energy.2022.125574
Zhao, Q., Ma, Y., & Zhao, G., (2017). Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet. Chinese Journal of Aeronautics30(6), 1818-1834. https://doi.org/10.1016/j.cja.2017.08.011
  • Received: 08 September 2023
  • Revised: 19 December 2023
  • Accepted: 01 February 2024
  • Available online: 27 March 2024