Cavalieri, A. V. G., Daviller, G., Comte, P., Jordan, P., Tadmor, G. & Gervais, Y. (2011). Using large eddy simulation to explore sound-source mechanisms in jets. 
Journal of Sound and Vibration, 
330(17), 4098-4113. 
https://doi.org/10.1016/j.jsv.2011.04.018
Valencia, E., Hidalgo, V., Nalianda, D., Laskaridis, P., & Singh, R. (2017). Discretized miller approach to assess effects on boundary layer ingestion induced distortion. 
Chinese Journal of Aeronautics, 
30(1), 235-248. 
https://doi.org/10.1016/j.cja.2016.12.005
Haeri, S., Kim, J. W., Narayanan, S., & Joseph, P. (2013). 
3D calculations of aerofoil-turbulence interaction noise and the effect of wavy leading edges. AIAA/CEAS Aeroacoustics Conference. 
https://doi.org/10.2514/6.2014-2325
Hansen, K. L., Kelso, R. M., & Doolan, C. J. (2010). 
Reduction of flow induced tonal noise through leading edge tubercle modifications. AIAA/CEAS Aeroacoustics Conference. 
https://doi.org/10.2514/6.2010-3700
Hersh, A. S., Soderman, P. T., & Hayden, R. E. (1974). Investigation of acoustic effects of leading-edge serrations on airfoils. 
Journal of Aircraft, 
11, 197-202. 
https://doi.org/10.2514/3.59219
Koca, K., Genc, M. S., Acikel, H. H., Cagdas, M., & Bodur, T. M. (2018). Identification of flow phenomena over NACA 4412 wind turbine airfoil at low reynolds numbers and role of laminar separation bubble on flow evolution. 
Energy, 
144(FEB.1), 750-764. 
https://doi.org/10.1016/j.energy.2017.12.045
Krömer, F., Czwielong, F., & Becker, S. (2019). Experimental investigation of the sound emission of skewed axial fans with leading-edge serrations. 
AIAA Journal, 
57(12), 5182-5196. 
https://doi.org/10.2514/1.J058134
Krömer, F., Renz, A., & Becker, S. (2018). Experimental Investigation of the Sound Reduction by Leading-Edge Serrations in Axial Fans. 
AIAA Journal, 
56, 2086-2090. 
https://doi.org/10.2514/1.J056355
Lele, S. K., Mendez, S., Ryu, J., Nichols, J., Shoeybi, M., & Moin, P. (2010). Sources of high-speed jet noise: Analysis of LES data and modeling. 
Procedia Engineering, 
6, 84-93. 
https://doi.org/10.1016/j.proeng.2010.09.010
Li, G. P., Ma, Z. L., Chen, C. S., Zhang, Y., Wang, Q., & Chen, E. Y. (2021). 
Experimental study on noise reduction characteristics of slanting serrated trailing edge blades. Journal of Physics: Conference Series, 1885, 042011. 
https://doi.org/10.1088/1742-6596/1885/4/042011
Lin, J. W., Liu, H. L., Dong, L., Zhou, R. Z., & Hua, R. N. (2022). Analysis of the sound field characteristics of a muffler at different flow conditions. 
Journal of Applied Fluid Mechanics, 
16(1), 147-156. 
https://doi.org/10.47176/jafm.16.01.1295
Liu, J. M., Zhang, T., & Zhang, Y. O. (2013). Numerical study on flow-induced noise for a steam stop-valve using large eddy simulation. 
Journal of Marine Science & Application, 
12(3), 351-360. 
https://doi.org/10.1007/s11804-013-1195-9
Rao, C., Ikeda, T., Nakata, T., & Liu, H. (2017). Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. 
Bioinspiration & Biomimetics, 
12(4), 046008. 
https://doi.org/10.1088/1748-3190/aa7013
Sandboge, R., Caro, S., Ploumhans, P., Ambs, R., Schillemeit, B., Washburn, K., & Shakib, F. (2006). 
Validation of a CAA formulation based on lighthill's analogy using AcuSolve and ACTRAN/LA on an idealized automotive HVAC blower and on an axial fan. AIAA/CEAS Aeroacoustics Conference. 
https://doi.org/10.2514/6.2006-2692
Shur, M. L., Spalart, P. R., & Strelets, M. K. (2011). LES-based evaluation of a microjet noise reduction concept in static and flight conditions. 
Journal of Sound & Vibration, 
330(17), 4083-4097. 
https://doi.org/10.1016/j.jsv.2011.02.013
Tan, J., Dong, P., Gao, J., Wang, C., & Zhang, L. (2023). Coupling bionic design and numerical simulation of the wavy leading-edge and seagull airfoil of axial flow blade for air-conditioner.
 Journal of Applied Fluid Mechanics, 
16(7), 1316-1330. 
https://doi.org/10.47176/jafm.16.07.1634
Zhai, C., Tang, Z., Zou, Q., & Qin, L. (2016). Experimental study on the noise characteristics regarding axial auxiliary fans and the noise reduction performance of mufflers. 
Arabian Journal for Science & Engineering, 
41(12), 1-10. 
https://doi.org/10.1007/s13369-016-2165-8
Zhang, C., Ji, L., Zhou, L., & Sun, S. (2020). Effect of blended blade tip and winglet on aerodynamic and aeroacoustic performances of a diagonal fan. 
Aerospace Science and Technology, 
98, 105688. 
https://doi.org/10.1016/j.ast.2020.105688
Zhou, H., Wang, L., Huang, Z. F., & Ren, J. Z. (2022). Shedding vortex simulation method based on viscous compensation technology research.
 Chinese Physics B, 
31(4). 
https://doi.org/10.1088/1674-1056/ac29ae
Zhou, S., Li, H., Wang, J., Wang, X., & Ye, J. (2014). Investigation acoustic effect of the convexity-preserving axial flow fan based on bezier function. 
Computers & Fluids, 
102, 85-93. 
https://doi.org/10.1016/j.compfluid.2014.06.019
Zuo, Z. G., Huang, Q., & Liu, S. (2019). An analysis on the flow field structures and the aerodynamic noise of airfoils with serrated trailing edges based on embedded large eddy flow simulations. 
Journal of Applied Fluid Mechanics, 12(2), 327-339
. https://doi.org/10.29252/jafm.12.02.29142