Akram, S., Athar, M., Saeed, K., Razia, A., Alghamdi, M., & Muhammad, T. (2022). Impact of partial slip on double diffusion convection of sisko nanofluids in asymmetric channel with peristaltic propulsion and inclined magnetic field. 
Nanomaterials, 12(16),
 2736
. https://doi.org/10.3390/nano12162736
                                                                                                                                                                                                                                 Arasteh, H., Mashayekhi, R., Ghaneifar, M., & Toghraie, D. (2019). Heat transfer enhancement in a counter-flow sinusoidal parallel-plate heat exchanger partially filled with porous media using metal foam in the channels’ divergent sections. 
Journal of Thermal Analysis and Calorimetry, 1-17. 
https://doi.org/10.1007/s10973-019-08870-w
                                                                                                                                                                                                                                                                                                                                                 Chen, T. B. Y., Liu, L., Yuen, A. C. Y., Chen, Q., & Yeoh, G. H., (2023a). A multiphase approach for pyrolysis modelling of polymeric materials. 
Experimental and Computational Multiphase Flow, 5(2), 199-211. 
https://doi.org/10.1016/j.jaap.2020.104931
                                                                                                                 Chen, X., Li, Y., Liu, Z., & Zhang, J. (2023b). Experimental and theoretical investigation of the migration and plugging of the particle in porous media based on elastic properties. 
Fuel, 332, 126224
. https://doi.org/10.1016/j.fuel.2022.126224
                                                                                                                 Hasanzadeh, Y., Alavi Fazel, S. A., & Azizi, Z. (2022). Experimental investigation on super high viscosity oil-water two-phase flow in a horizontal pipe. 
Iranian Journal of Chemistry and Chemical Engineering, 
41(2), 635-651. 
https://doi.org/10.30492/ijcce.2022.122737.4015
                                                                                                                 Janfada, T. S., Kasiri, N., & Dehghani, M. R. (2022). Modeling of direct contact condensation in the water-saturated zone of the soil exposed to steam injection. 
Iranian Journal of Chemistry and Chemical Engineering, 41(3), 1003-1021. 
https://doi.org/10.30492/ijcce.2021.86714.3119
                                                                                                                 Jiang, Y., Li, Y., Ding, Y., Hu, S., Dang, J., Yang, F., & Ouyang, M., (2023). Simulation and experiment study on two-phase flow characteristics of proton exchange membrane electrolysis cell. 
Journal of Power Sources, 553, 232303. 
https://doi.org/10.1016/j.jpowsour.2022.232303
                                                                                                                 Joibary, S. M. M., & Siavashi, M. (2019). Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement
. Journal of Thermal Analysis and Calorimetry, 1-15. 
https://doi.org/10.1007/s10973-019-08991-2
                                                                                                                 Kirkup, L. (2006). 
An Introduction to Uncertainty in Measurement Using the Gum :(Guide to the Expression of Uncertainty in Measurement. Cambridge University Press. 
https://doi.org/10.1017/CBO9780511755538
                                                                                                                 Liang, F., He, Z., Meng, J., Zhao, J., & Yu, C. (2023). Effects of microfracture parameters on adaptive pumping in fractured porous media: Pore-scale simulation. 
Energy, 263, 125950
. https://doi.org/10.1016/j.energy.2022.125950
                                                                                                                 Liu, B. (2008). Fuzzy process, hybrid process and uncertain process. Journal of Uncertain Systems, 2(1), 3-16.
                                                                                                                Man, Y., Tong, J., Wang, T., Wang, S., & Xu, H. (2023). Study on intermittent microwave convective drying characteristics and flow field of porous media food. 
Energies, 16(1), 441. 
https://doi.org/10.3390/en16010441
                                                                                                                 Mellouli, S., Dhaou, H., Askri, F., & Jemni, A. (2009). Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger
. International Journal of Hydrogen Energy, 34(23),
 9393-9401. 
https://doi.org/10.1016/j.ijhydene.2009.09.043
                                                                                                                 Naqvi, S. M. A., & Wang, Q. (2020). Performance enhancement of shell-tube heat exchanger by clamping anti-vibration baffles with porous media involvement
. Heat Transfer Engineering, (just-accepted, 1-21. 
https://doi.org/10.1080/01457632.2020.1807098
                                                                                                                                                                                                                                 Saeed, K., Akram, S., Ahmad, A., Athar, M., Razia, A., & Muhammad, T. (2022). Impact of slip boundaries on double diffusivity convection in an asymmetric channel with magneto‐tangent hyperbolic nanofluid with peristaltic flow. 
ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 103(1), e202100338. 
https://doi.org/10.1016/j.csite.2021.100965
                                                                                                                 Sharma, V. K., Singh, A., & Tiwari, P. (2023). An experimental study of pore-scale flow dynamics and heavy oil recovery using low saline water and chemical flooding. 
Fuel, 334, 126756
. https://doi.org/10.1016/j.fuel.2022.126756
                                                                                                                 Shirvan, K. M., Ellahi, R., Mirzakhanlari, S., & Mamourian, M. (2016). Enhancement of heat transfer and heat exchanger effectiveness in a double pipe heat exchanger filled with porous media: numerical simulation and sensitivity analysis of turbulent fluid flow. 
Applied Thermal Engineering, 109, 761-774. 
https://doi.org/10.1016/j.applthermaleng.2016.08.116
                                                                                                                 Siavashi, M., & Joibary, S. M. M. (2019). Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media
. Journal of Thermal Analysis and Calorimetry, 135(2), 1595-1610
. https://doi.org/10.1007/s10973-018-7829-z
                                                                                                                                                                                                                                 Tounsi, H., Rutqvist, J., Hu, M., & Wolters, R. (2023). Numerical investigation of heating and cooling-induced damage and brine migration in geologic rock salt: Insights from coupled THM modeling of a controlled block scale experiment
. Computers and Geotechnics, 154, 105161
. https://doi.org/10.1016/j.compgeo.2022.105161
                                                                                                                                                                                                                                 Zheng, C., Jun Guo, G., Qin, X., Dong, Y., Lu, C., Peng, B., Tang, W., & Bian, H. (2023). Molecular simulation studies on the water/methane two-phase flow in a cylindrical silica nanopore: Formation mechanisms of water lock and implications for gas hydrate exploitation
. Fuel, 333, 126258
. https://doi.org/10.1016/j.fuel.2022.126258