Numerical Analysis of the Kline and Fogleman Airfoil's Effect on the Operation of Straight Darrieus Wind Turbine

Document Type : Regular Article

Authors

1 University of Science and Technology Houari Boumediene (USTHB), Bab Ezzouar, Algiers, 16111, Algeria

2 Royal Military College of Canada, Station Forces Kingston, Ontario, K7K 7B4, Canada

3 University of Batna1, Batna, Batna, 05000, Algeria

10.47176/jafm.17.8.2490

Abstract

The blade profile selection is paramount for the efficient operation of straight Darrieus wind turbines in terms of torque and power generation. In this work, we have used the Kline-Fogleman Airfoil (KFA) design for the wind turbine blades. The concept of KFA design aims to cause flow separation, vortex formation, and reattachment establishment before the trailing edge. Thus, geometric tests on have been performed on the baseline airfoil NACA0015 as one of the best profiles for operating a straight Darrius wind turbine. A two-dimensional Computational Fluid Dynamic (CFD) model using the two-equation Shear Stress Transport k-ω (SST k-ω) turbulent model was developed in ANSYS/FLUENT software to assess the aerodynamic efficiency of the modified airfoil. Two designs (KFA-2 and KFA-4) were tested initially in the static case. The effects of the opening step angle and its curvature diameter were studied for an angle of attack’s range of -20° to +20°. The rounded KFA-4 design with an opening step angle of 93.6° led to a significant improvement in the lift-to-drag ratio thus, aerodynamic efficiency. Finally, the straight KFA-4 design with the opening step angle of 93.6° revealed a the most advantageous effects on the operation of a straight Darrieus wind turbine for a Tip Speed Ratio less than 1.6 (TSR<1.6). It allowed a noticeable reduction of the dead zone and TSR corresponding to the nominal power, thus consequently improving the starting torque and delaying torque stall.

Keywords

Main Subjects


Akhlaghi, M., Asadbeigi, M., & Ghafoorian, F. (2023). Novel CFD and DMST dual method parametric study and optimization of a darrieus vertical axis wind turbine. Journal of Applied Fluid Mechanics, 17(1), 205-218. https://www.jafmonline.net/article_2337.html
Amet, E., Maître, T., Pellone, C., & Achard, J. L. (2009). 2D numerical simulations of blade-vortex interaction in a darrieus turbine. Journal of Fluids Engineering, 131(11), 111103. https://doi.org/10.1115/1.4000258 
ANSYS Fluent user guide (2011). Ansys fluent theory guide. Ansys Inc., USA, 15317, 724-746.
Apsley, D. D., & Leschziner, M. A. (2000). Advanced turbulence modelling of separated flow in a diffuser. Flow, turbulence and combustion, 63, 81-112. https://doi.org/https://doi.org/10.1023/A:1009930107544 
Arun Prakash, J., Radhakrishnan, S. S., Ramavijay, N., & Vishnupriya, S. (2017). Experimental investigation of stepped aerofoil using propeller test rig. IJRET: International Journal of Research in Engineering and Technology. https://doi.org/10.15623/ijret.2014.0308033
Aziz, M. A. B., & Islam, M. S. (2017). Effect of lower surface modification on aerodynamic characteristics of an airfoil. International Conference on Mechanical Engineering and Renewable Energy. https://www.cuet.ac.bd/icmere/files2017f/ICMERE2017-PI-250.pdf
Baxevanou, C. A., & Fidaros, D. K. (2008). Validation of numerical schemes and turbulence models combinations for transient flow around airfoil. Engineering Applications of Computational Fluid Mechanics, 2(2), 208-221. https://doi.org/10.1080/19942060.2008.11015222 
Boroomand, M., & Hosseinverdi, S. (2009). Numerical investigation of turbulent flow around a stepped airfoil at high Reynolds number. Fluids Engineering Division Summer Meeting. https://doi.org/10.1115/FEDSM2009-78294
Bose Sumantraa, R., Chandramouli, S., Premsai T., P., Prithviraj, P., Mugundhan, V., & Velamati, R. K. (2014). Numerical analysis of effect of pitch angle on a small scale vertical axis wind turbine. International Journal Of Renewable Energy Research, 4(4), 929–935. https://doi.org/10.20508/ijrer.v4i4.1653.g6463
Boudis, A., Benzaoui, A., Oualli, H., Guerri, O., Bayeul-Lain, A. C., & Coutier-Delgosha, O. (2018). Energy extraction performance improvement of a flapping foil by the use of combined foil. Journal of Applied Fluid Mechanics, 1651-1663. https://doi.org/10.29252/jafm.11.06.29099
Bravo, R., Tullis, S., & Ziada, S. (2007). Performance testing of a small vertical-axis wind turbine. Proceedings of the 21st Canadian Congress of Applied Mechanics. https://www.academia.edu/download/54779218/Performance_Testing_of_a_Small_Vertical-Axis_Wind_Turbine.pdf
Cardoso Netto, D., Ramirez Gustavo, R., & Manzanares Filho, N. (2023). Surrogate-based design optimization of a h-darrieus wind turbine comparing classical response surface, artificial neural networks, and kriging. Journal of Applied Fluid Mechanics, 16(4), 703-716. https://doi.org/10.47176/jafm.16.04.1530
Danao, L. A., Qin, N., & Howell, R. (2012). A numerical study of blade thickness and camber effects on vertical axis wind turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226(7), 867-881. https://doi.org/10.1177/0957650912454403
Fertis. D. G., & Smith, L. L. (1986). Airfoil. United States Patent Number: US4606519A.  https://patents.google.com/patent/US4606519A/en
Frunzulica, F., Dumitrache, A., & Suatean, B. (2014). Numerical investigations of passive flow control elements for vertical axis wind turbine. AIP Conference Proceedings. American Institute of Physics. https://www.fluid.tuwien.ac.at/322057?action=AttachFile&do=get&target=flu_ug.pdf
Gross, C. (2019). Characterization of single-step Kline-Fogleman airfoils. (Doctoral dissertation, Wichita State University). http://hdl.handle.net/10057/17146
Ismail, M. F., & Vijayaraghavan, K. (2015). The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy, 80, 20-31. https://www.sciencedirect.com/science/article/pii/S0360544214012894 
Jang, C. S., Ross, J. C., & Cummings, R. M. (1998). Numerical investigation of an airfoil with a Gurney flap. Aircraft Design, 1(2), 75-88. https://www.sciencedirect.com/science/article/pii/S136988699800010X 
Kabir, A., Islam, M., Jahan, N., Akib, Y. M., & Mili, M. I. J. (2021). Numerical simulation and comparative study of aerodynamic performance of Kline Fogleman modified backward stepped airfoils and the NACA 4415 airfoil. Bangladesh Maritime Journal (BMJ) Volume, 5, 2520-1840. https://bsmrmu.edu.bd/public/files/econtents/6056f1d5c355f6-Numerical%20Simulation%20and%20Comparative%20Study%20of.pdf
Kozak, P. A., Vallverd, D., & Rempfer, D. (2016). Modeling vertical-axis wind-turbine performance: blade-element method versus finite volume approach. Journal of Propulsion and Power, 32(3), 592-601. http://dx.doi.org/10.2514/1.B35550
Lanzafame, R., Mauro, S., & Messina, M. (2014). 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. Energy Procedia, 45, 131-140. https://doi.org/10.1016/j.egypro.2014.01.015
Lanzafame, R., Mauro, S., Messina, M., & Brusca, S. (2020). Development and validation of CFD 2D models for the simulation of micro H-Darrieus turbines subjected to high boundary layer instabilities. Energies, 13(21), 5564. https://doi.org/10.3390/en13215564
Li, Y., Yang, S., Feng, F., & Tagawa, K. (2023). A review on numerical simulation based on CFD technology of aerodynamic characteristics of straight-bladed vertical axis wind turbines. Energy Reports, 9, 4360-4379. https://doi.org/10.1016/j.egyr.2023.03.082
Lopez Mejia, O. D., Mejia, O. E., Escorcia, K. M., Suarez, F., & Laín, S. (2021). Comparison of sliding and overset mesh techniques in the simulation of a vertical axis turbine for hydrokinetic applications. Processes, 9(11). https://www.mdpi.com/2227-9717/9/11/1933 
Ma, N., Lei, H., Han, Z., Zhou, D., Bao, Y., Zhang, K., Zhou, L., & Chen, C. (2018). Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio. Energy, 150, 236-252. https://www.sciencedirect.com/science/article/p ii/S0360544218303499  
Manerikar, S. S., Damkale, S. R., Havaldar, S. N., Kulkarni, S. V., & Keskar, Y. A. (2021). Horizontal axis wind turbines passive flow control methods: a review. IOP Conference Series: Materials Science and Engineering, I. O. P. Publishing. https://doi.org/10.1088/1757-899X/1136/1/012022
McLaren, K., Tullis, S., & Ziada, S. (2012). Computational fluid dynamics simulation of the aerodynamics of a high solidity, small-scale vertical axis wind turbine. Wind Energy, 15(3), 349-361. https://doi.org/10.1002/we.472
Meana-Fernández, A., Solís-Gallego, I., Fernández Oro, J. M., Argüelles Díaz, K. M., & Velarde-Suárez, S. (2018). Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs. Energy, 147, 504-517. https://doi.org/https://doi.org/10.1016/j.energy.2018.01.062 
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Modi, F. N., & Gilke, N. R. (2018). Computational analysis of various airfoil profile on the performance of h-Darrieus wind turbine. 2018 Ieee International Conference On System, Computation, Automation And Networking (Icscan), IEEE. https://doi.org/10.1109/ICSCAN.2018.8541245
Moghimi, M., & Motawej, H. J. J. O. A. F. M. (2020). Comparison aerodynamic performance and power fluctuation between darrieus straight-bladed and gorlov vertical axis wind turbines. Journal of Applied Fluid Mechanics, 13(5), 1623-1633. https://doi.org/10.36884/jafm.13.05.30833
Mohamed, M. H. (2012). Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy, 47(1), 522-530. https://www.sciencedirect.com/science/article/pii/S0360544212006755 
Mohammed, A. A., Ouakad, H. M., Sahin, A. Z., & Bahaidarah, H. M. S. (2019). Vertical axis wind turbine aerodynamics: summary and review of momentum models. Journal of Energy Resources Technology, 141(5), 050801. https://doi.org/10.1115/1.4042643
Mohan Kumar, P., Sivalingam, K., Lim, T.-C., Ramakrishna, S., & Wei, H. (2019). review on the evolution of darrieus vertical axis wind turbine: large wind turbines. Clean Technologies, 1(1), 205-223. https://www.mdpi.com/2571-8797/1/1/14 
Olsman, W. F. J., & Colonius, T. (2011). Numerical simulation of flow over an airfoil with a cavity. AIAA journal, 49(1), 143-149. https://doi.org/10.2514/1.J050542
Qadri, M., Shahzad, A., Zhao, F., & Tang, H. (2019). An experimental investigation of a passively flapping foil in energy harvesting mode. Journal of Applied Fluid Mechanics, 12(5), 1547-1561. https://doi.org/10.29252/jafm.12.05.29648
Qamar, S. B., & Janajreh, I. (2017). A comprehensive analysis of solidity for cambered darrieus VAWTs. International Journal of Hydrogen Energy, 42(30), 19420-19431. https://doi.org/https://doi.org/10.1016/j.ijhydene.2017.06.041 
Rezaeiha, A., Montazeri, H., & Blocken, B. (2019). On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy, 180, 838-857. https://doi.org/https://doi.org/10.1016/j.energy.2019.05.053 
Rogowski, K., Hansen, M. O. L., & Bangga, G. (2020). Performance analysis of a H-darrieus wind turbine for a series of 4-digit NACA airfoils. Energies, 13(12). https://www.mdpi.com/1996-1073/13/12/3196 
Roh, S. C., & Kang, S. H. (2013). Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine. Journal of Mechanical Science and Technology, 27(11), 3299-3307. https://doi.org/10.1007/s12206-013-0852-x
Rumsey, C. (2017). NASA langley research center turbulence modeling resource. NASA Langley Research Center, Hampton, VA, https://turbmodels.larc.nasa.gov/
Sagharichi, A., Maghrebi, M. J., & ArabGolarcheh, A. (2016). Variable pitch blades: An approach for improving performance of Darrieus wind turbine. Journal of Renewable and Sustainable Energy, 8(5), 053305. https://doi.org/10.1063/1.4964310 
Sammak, S., Mojgani, R., & Boroomand, M. (2012). Transitional CFD Investigation of Stepped Airfoil. THMT-12. Proceedings of the Seventh International Symposium On Turbulence Heat and Mass Transfer, Begel House. https://doi.org/10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.2190
Sheldahl, R. E., & Klimas, P. C. (1981). Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines (No. SAND-80-2114). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States). https://www.osti.gov/biblio/6548367
Sobhani, E., Ghaffari, M., & Maghrebi, M. J. (2017). Numerical investigation of dimple effects on darrieus vertical axis wind turbine. Energy, 133, 231-241. https://www.sciencedirect.com/science/article/pii/S0360544217308617 
Song, C., Wu, G., Zhu, W., & Zhang, X. (2020). Study on aerodynamic characteristics of Darrieus vertical axis wind turbines with different airfoil maximum thicknesses through computational fluid dynamics. Arabian Journal for Science and Engineering, 45, 689-698. https://doi.org/10.1007/s13369-019-04127-8
Storms, B. L., & Jang, C. S. (1994). Lift enhancement of an airfoil using a Gurney flap and vortex generators. Journal of Aircraft, 31(3), 542-547. https://doi.org/10.2514/3.46528
Subramanian, A., Yogesh, S. A., Sivanandan, H., Giri, A., Vasudevan, M., Mugundhan, V., & Velamati, R. K. (2017). Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy, 133, 179-190. https://www.sciencedirect.com/science/article/pii/S0360544217308757 
Sun, X., Xu, Y., & Huang, D. (2019). Numerical simulation and research on improving aerodynamic performance of vertical axis wind turbine by co-flow jet. Journal of Renewable and Sustainable Energy, 11(1). https://doi.org/10.1063/1.5052378
Syawitri, T. P., Yao, Y., Yao, J., & Chandra, B. (2022). A review on the use of passive flow control devices as performance enhancement of lift-type vertical axis wind turbines. Wiley Interdisciplinary Reviews: Energy and Environment, 11(4), e435. https://doi.org/10.1002/wene.435
Truong, H. V. A., Dang, T. D., Vo, C. P., & Ahn, K. K. (2022). Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review. Renewable and Sustainable Energy Reviews, 170, 112958. https://doi.org/10.1016/j.rser.2022.112958
Wang, H., Zhang, B., Qiu, Q., & Xu, X. (2017). Flow control on the NREL S809 wind turbine airfoil using vortex generators. Energy, 118, 1210-1221. https://www.sciencedirect.com/science/article/pii/S0360544216315924 
Wang, X., Luo, X., Zhuang, B., Yu, W., & Xu, H. (2011). 6-DOF numerical simulation of the vertical-axis water turbine. Fluids Engineering Division Summer Meeting. https://doi.org/10.1115/AJK2011-22035
Wang, Y., Shen, S., Li, G., Huang, D., & Zheng, Z. (2018). Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes. Renewable Energy, 126, 801-818. https://www.sciencedirect.com/science/article/pii/S0960148118302398 
Wekesa, D. W., Wang, C., Wei, Y., Kamau, J. N., & Danao, L. A. M. (2015). A numerical analysis of unsteady inflow wind for site specific vertical axis wind turbine: A case study for Marsabit and Garissa in Kenya. Renewable Energy, 76, 648-661. https://www.sciencedirect.com/science/article/pii/S0960148114008052 
Winslow, J., Otsuka, H., Govindarajan, B., & Chopra, I. (2018). Basic understanding of airfoil characteristics at low reynolds numbers (104–105). Journal of Aircraft, 55(3), 1050-1061. https://doi.org/10.2514/1.C034415 
Xie, Y. H., Jiang, W., Lu, K., & Zhang, D. (2016). Numerical investigation into energy extraction of flapping airfoil with Gurney flaps. Energy, 109, 694-702. https://www.sciencedirect.com/science/article/pii/S0360544216306491 
Zamani, M., Maghrebi, M. J., & Varedi, S. R. (2016a). Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation. Renewable Energy, 95, 109-126. https://www.sciencedirect.com/science/article/pii/S0960148116302531 
Zamani, M., Nazari, S., Moshizi, S. A., & Maghrebi, M. J. (2016b). Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine. Energy, 116, 1243-1255. https://www.sciencedirect.com/science/article/pii/S0360544216314529 
Zhang, L., Shan, X., & Xie, T. (2020). Active control for wall drag reduction: Methods, mechanisms and performance. IEEE Access, 8, 7039-7057. https://doi.org/10.1109/ACCESS.2020.2963843
Zhao, Z., Wang, D., Wang, T., Shen, W., Liu, H., & Chen, M. (2022). A review: Approaches for aerodynamic performance improvement of lift-type vertical axis wind turbine. Sustainable Energy Technologies and Assessments, 49, 101789. https://www.sciencedirect.com/science/article/pii/S2213138821008031 
Zhao, Z., Wang, R., Shen, W., Wang, T., Xu, B., Zheng, Y., & Qian, S. (2018). Variable pitch approach for performance improving of straight-bladed VAWT at rated tip speed ratio. Applied Sciences, 8(6). https://www.mdpi.com/2076-3417/8/6/957