Investigating Rising Bubbles in Air-nanofluid Two-phase Flow: A Vertical Channel Simulation Approach

Document Type : Regular Article


1 ENERGARID Laboratory, Tahri Mohamed University of Bechar, P.O.B. 417, Algeria

2 Energy and Environment Laboratory, Department of Mechanical Engineering, Institute of Technology, University Center Salhi Ahmed Naama (Ctr. Univ. Naama), P.O. Box 66, Naama 45000, Algeria

3 College of Technical Engineering, National University of Science and Technology, Dhi Qar, 64001, Iraq

4 Division of Advanced Nano Material Technologies, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq



The study analyzes the unique behavior of two-phase flows when incorporating nanofluids containing aluminum trioxide (Al2O3) and copper (Cu) nanoparticles in a vertical channel. The main goal is to investigate the behavior of air-nanofluid mixtures in this setting, with potential implications for industrial and exploration applications. Research in this area could provide valuable insights into the dynamics of these flows and their impact on heat transfer, fluid dynamics, and material science. This study includes an analysis of upwelling dynamics, the effect of fluid characteristics on bubble growth, and the system's thermal efficiency. Using numerical and quantitative visualization techniques, we seek to understand the behavior of these particles at the interface between the liquid and gas phases by integrating Al2O3 and Cu nanoparticles into the VOF approach. Because of their superior thermal conductivity, copper nanoparticles have a higher volumetric density and provide more efficient heat transfer, leading to quick and efficient thermal dissipation. Smaller nanoparticles offer an increased surface area-to-volume ratio, which improves heat transfer capabilities and ensures uniform heat dissipation throughout the material. Consequently, copper nanoparticles emerge as the preferred choice for applications necessitating high thermal transfer and optimal performance. These results significantly impact the design of more efficient heat exchangers and optimize recovery techniques by elucidating the interactions between these nanoparticles and the surrounding fluids. Furthermore, the selection of smaller copper nanoparticles further amplifies thermal transfer, maximizing performance across diverse applications.


Main Subjects

Agarwal, S. S., Kumar, K., Chandra, L., & Ghosh, P. (2022). Improved wake velocity distribution behind a rising bubble for isothermal and thermally stratified liquid layers. Journal of Heat Transfer, 144(7), 073701.
Al-Rashed, A. A., Kalidasan, K., Kolsi, L., Borjini, M. N., & Kanna, P. R. (2017). Three-dimensional natural convection of CNT-water nanofluid confined in an inclined enclosure with Ahmed body. Journal of Thermal Science and Technology, 12(1), JTST0002-JTST0002.
Ambrosio, L., & Soner, H. M. (1996). Level set approach to mean curvature flow in arbitrary codimension. Journal of Differential Geometry, 43(4), 693-737.
Battistella, A., van Schijndel, S. J. G., Baltussen, M. W., Roghair, I., & van Sint Annaland, M. (2020). On the terminal velocity of single bubbles rising in non-Newtonian power-law liquids. Journal of Non-Newtonian Fluid Mechanics, 278, 104249.
Boursas, A., Salmi, M., Lorenzini, G., Ahmad, H., Menni, Y., & Fridja, D. (2021). Enhanced heat transfer by oil/multi-walled carbon nano-tubes nanofluid. Annales de Chimie Science des Materiaux, 45(2), 93-103.
Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354.  
Chen, P., Li, Y., Han, J., Jing, L., Zhang, Z., & Li, Y. (2023). Hydrodynamics of fluidized bed flotation column with a homogeneous binary mixture of steel balls. Powder Technology, 429, 118920.
Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States).
Crha, J., Basařová, P., & Ruzicka, M. C. (2023). CFD simulation of a small bubble motion in 3D flow domain: effect of liquid density, viscosity and surface tension. Chemical Papers, 77(7), 3979-3992.
Dai, B., Cao, Y., Zhou, X., Liu, S., Fu, R., Li, C., & Wang, D. (2024a). Exergy, carbon footprint and cost lifecycle evaluation of cascade mechanical subcooling CO2 commercial refrigeration system in China. Journal of Cleaner Production434, 140186.
Dai, B., Wang, Q., Liu, S., Zhang, J., Wang, Y., Kong, Z., Chen, Y., & Wang, D. (2024b). Multi-objective optimization analysis of combined heating and cooling transcritical CO2 system integrated with mechanical subcooling utilizing hydrocarbon mixture based on machine learning. Energy Conversion and Management301, 118057.
Dai, B., Wu, T., Liu, S., Qi, H., Zhang, P., Wang, D., & Wang, X. (2024c). Flow boiling heat transfer characteristics of zeotropic mixture CO2/R152a with large temperature glide in a 2 mm horizontal tube. International Journal of Heat and Mass Transfer218, 124779.
Ghachem, K., Hussein, A. K., Kolsi, L., & Younis, O. (2021). CNT–water nanofluid magneto-convective heat transfer in a cubical cavity equipped with perforated partition. The European Physical Journal Plus, 136, 1-22.
Gopala, V. R., & Van Wachem, B. G. (2008). Volume of fluid methods for immiscible-fluid and free-surface flows. Chemical Engineering Journal, 141(1-3), 204-221.  
Hammid, S., Naima, K., Alqahtani, S., Alshehery, S., Oudah, K. H., Ikumapayi, O. M., & Menni, Y. (2024). Laminar rarefied flow analysis in a microchannel with H2O-Cu nanofluid: A thermal lattice Boltzmann study. Modern Physics Letters B, 38(03), 2450006.
Han, W., Zhen-Yu, Z., Yong-Ming, Y., & Hui-Sheng, Z. (2010). Surface tension effects on the behaviour of a rising bubble driven by buoyancy force. Chinese Physics B, 19(2), 026801.
Hassan, N. M. S., Khan, M. M. K., Rasul, M. G., & Rackemann, D. W. (2010). Bubble rise velocity and trajectory in xanthan gum crystal suspension. Applied Rheology, 20(6), 65102.  
Hemmati-Sarapardeh, A., Varamesh, A., Husein, M. M., & Karan, K. (2018). On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renewable and Sustainable Energy Reviews, 81, 313-329.
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225.
Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S., & Tobiska, L. (2009). Quantitative benchmark computations of two‐dimensional bubble dynamics. International Journal for Numerical Methods in Fluids, 60(11), 1259-1288.  
Kothe, D. B. (1998). Computational fluid dynamics with moving boundaries. AIAA Journal, 36(2), 303-304.  
Leung, C., Adler, J., Shapley, N., Langrish, T. A., & Glasser, B. J. (2023). Fluidized bed drying of supported Catalysts: Effect of process parameters. Chemical Engineering Science, 282, 119280.  
Liao, B., Yang, Z., & Chen, S. (2022). Numerical investigation of two in-line two-dimensional bubbles rising in a two-dimensional quiescent ambient liquid by a conservative phase-field lattice boltzmann method. Discrete Dynamics in Nature and Society, 2022.
Liu, Z., Wang, H., Sun, S., Xu, L., & Yang, W. (2023). Investigation of wetting and drying process in a spout-fluid bed using acoustic sensor and electrical capacitance tomography. Chemical Engineering Science, 281, 119160.  
Ma, D., Liu, M., Zu, Y., & Tang, C. (2012). Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns. Chemical Engineering Science, 72, 61-77.
Mahammedi, A., Ameur, H., Menni, Y., & Medjahed, D. M. (2021). Numerical study of turbulent flows and convective heat transfer of Al2O3-water nanofluids in a circular tube. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 77(2), 1-12.
Maouedj, R., Menni, Y., Inc, M., Chu, Y. M., Ameur, H., & Lorenzini, G. (2021). Simulating the turbulent hydrothermal behavior of Oil/MWCNT nanofluid in a solar channel heat exchanger equipped with vortex generators. CMES-Computer Modeling in Engineering & Sciences, 126(3), 855-889.  
Mei, L., Chen, X., Liu, B., Zhang, Z., Hu, T., Liang, J., ... & Wang, L. (2023). Experimental study on bubble dynamics and mass transfer characteristics of coaxial bubbles in petroleum-based liquids. ACS Omega, 8(19), 17159-17170.  
Menni, Y., Chamkha, A. J., Ghazvini, M., Ahmadi, M. H., Ameur, H., Issakhov, A., & Inc, M. (2020). Enhancement of the turbulent convective heat transfer in channels through the baffling technique and oil/multiwalled carbon nanotube nanofluids. Numerical Heat Transfer, Part A: Applications, 79(4), 311-351.
Menni, Y., Chamkha, A. J., Zidani, C., & Benyoucef, B. (2019). Heat and nanofluid transfer in baffled channels of different outlet models. Mathematical Modelling of Engineering Problems, 6(1), 21-28.
Merabtene, T., Garoosi, F., & Mahdi, T. F. (2023). Numerical modeling of liquid spills from the damaged container and collision of two rising bubbles in partially filled enclosure using modified Volume-of-Fluid (VOF) method. Engineering Analysis with Boundary Elements, 154, 83-121.
Mundhra, R., Lakkaraju, R., Das, P. K., Pakhomov, M. A., & Lobanov, P. D. (2023). Effect of wall proximity and surface tension on a single bubble rising near a vertical wall. Water, 15(8), 1567.
Ningegowda, B. M., & Premachandran, B. (2014). A coupled level set and volume of fluid method with multi-directional advection algorithms for two-phase flows with and without phase change. International Journal of Heat and Mass Transfer, 79, 532-550.   
Osher, S., Fedkiw, R., & Piechor, K. (2004). Level set methods and dynamic implicit surfaces. Applied Mechanics Reviews, 57(3), B15-B16.
Pak, B. C., & Cho, Y. I. (1998). Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal, 11(2), 151-170.
Pang, M., Lei, Y., & Hu, B. (2023). Experimental Study of the Rising Behavior of a Single Bubble in Shear-shinning Fluids, Recent Patents on Engineering, 18, e150523216902.
Rahimi, A., Kasaeipoor, A., Hasani Malekshah, E., & Kolsi, L. (2018). Lattice boltzmann simulation of free convection in nanofluid filled cavity with partially active walls–entropy generation and heatline visualization. International Journal of Numerical Methods for Heat & Fluid Flow, 28(10), 2254-2283.
Rudyak, V. Y., & Minakov, A. V. (2018). Thermophysical properties of nanofluids. The European Physical Journal E, 41, 1-12.
Seropian, G., Higginbotham, K., Kennedy, B. M., Schaefer, L. N., Walter, T. R., & Soldati, A. (2023). The effect of mechanical shaking on the rising velocity of bubbles in high‐viscosity shear‐thinning fluids. Journal of Geophysical Research: Solid Earth, e2022JB025741.
Sethian, J. A. (1999). Level set methods and fast marching methods : Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge Monograph on Applied and Computational Mathematics.
Shyy, W., Francois, M., Udaykumar, H. S., N’dri and, N., & Tran-Son-Tay, R. (2001). Moving boundaries in micro-scale biofluid dynamics. Applied Mechanics Reviews, 54(5), 405-454.  
Soria-Verdugo, A., Guil-Pedrosa, J. F., Hernández-Jiménez, F., García-Gutiérrez, L. M., Cano-Pleite, E., & García-Hernando, N. (2023). Experimental study of the discharge process of a thermal energy storage system based on granular material operated as a fluidized or confined bed. Journal of Energy Storage, 73, 109173.
Vaishnavi, G. S., Ramarajan, J., & Jayavel, S. (2023). Numerical studies of bubble formation dynamics in gas-liquid interaction using Volume of Fluid (VOF) method. Thermal Science and Engineering Progress, 39, 101718.
Verma, A., Babu, R., & Das, M. K. (2017). Modelling of a single bubble rising in a liquid column. In A. Saha, D. Das, R. Srivastava, P. Panigrahi & K. Muralidhar (Eds.), Fluid Mechanics and Fluid Power – Contemporary Research. Lecture Notes in Mechanical Engineering. Springer, New Delhi.
Watanabe, T., & Ebihara, K. (2003). Numerical simulation of coalescence and breakup of rising droplets. Computers & Fluids, 32(6), 823-834.
Xue, T., Xu, L., & Wang, Q. (2019). Measurement of seawater surface tension coefficient based on bubble rising behavior. Measurement, 138, 332-340.
Yan, J., Lin, S., Bazilevs, Y., & Wagner, G. (2019). Isogeometric analysis of multi-phase flows with surface tension and with application to dynamics of rising bubbles. Computers & Fluids, 179, 777-789.
Zhao, W., Liang, J., Sun, M., & Wang, Z. (2021). Investigation on the effect of convective outflow boundary condition on the bubbles growth, rising and breakup dynamics of nucleate boiling. International Journal of Thermal Sciences, 167, 106877.