Influence of Plasma on the Supersonic Air-intake Buzz

Document Type : Regular Article


Department of Space Engineering and Rocketry, Birla Institute of Technology, Mesra, Ranchi-835215, India



Buzz is an unwanted and inevitable phenomenon occurring due to the subcritical operation of intake which needs a comprehensive understanding. The buzz pattern in axisymmetric intakes differs from 2D counterpart and requires further investigation. The current study emphasizes the ways of buzz formation and its sustenance at supersonic speeds. In the present study URANS simulations have been done for various throttling ratios to simulate the engine demand conditions. It has been found that the onset of intake buzz happens for anything above the throttling ratio of 0.54. An active flow control technique using plasma actuator was used here to mitigate the influence of buzz. The study also emphases on the impact of plasma power densities on the intake performance.


Main Subjects

Abedi, M., Askari, R., Sepahi Younsi, J., & Soltani, M. R. (2020). Axisymmetric and three-dimensional flow simulation of a mixed compression supersonic air inlet. Propulsion and Power Research, 9(1), 51-61.
Chen, H., & Tan, H. J. (2019). Buzz flow diversity in a supersonic inlet ingesting strong shear layers. Aerospace Science and Technology, 95,
Chen, H., Tan, H. J., Zhang, Q. F., & Zhang, Y. (2017). Buzz flows in an external-compression inlet with partially isentropic compression. AIAA Journal, 55, (12), 4286–4295.
Chen, H., Tan, H. J., Zhang, Q. F., & Zhang, Y. (2018). Throttling process and buzz mechanism of a supersonic inlet at overspeed mode. AIAA Journal, 56(5), 1953–1964.
Dailey, C. L. (1954). Supersonic Diffuser Instability [PhD. dissertation, California Inst. of Technology], Pasadena, CA.
Falempin, F., Firsov, A. A., Yarantsev, D. A., Goldfeld, M. A., Timofeev, K., & Leonov, S. B. (2015). plasma control of shock wave configuration in Off-Design mode of M = 2 inlet. Experiments in Fluids, 56(3), 2–11.
Ferrero, A. (2020). Control of a supersonic inlet in off-design conditions with plasma actuators and bleed. Aerospace, 7(3), 32.
Ferri, A., & Nucci, L. M. (1951). The origin of aerodynamic instability of supersonic inlet at subcritical condition. NACA RM-L50K30.
Ganiev, Y. C., Gordeev, V. P., Krasilnikov, A. V., V. I. Lagutin, V. I., Otmennikov, V. N., & Panasenko, A. V. (2000). Aerodynamic drag reduction by plasma and hot-gas injection. Journal of Thermophysics and Heat Transfer 14(1), 10–17.
Kandala, R., & Candler, G. V. (2004). Numerical studies of laser-induced energy deposition for supersonic flow control. AIAA Journal, 42(11), 2266–2275.
Kumar, P., & Das, S. (2023, September 1-2). Influence of plasma during supersonic intake buzz. 36th National Convention of Aerospace Engineers (NCAE-2023), Karnataka State Centre, Bengaluru.
Kwak, E., & Lee, S. (2013). Numerical study of the effect of exit configurations on supersonic inlet buzz. 31st AIAA Applied Aerodynamics Conference, San Diego, California.
Lee, H. J., Lee, B. J., Kim, S. D., & Jeung, I. (2011). Flow characteristics of small sized supersonic inlets. Journal of Propulsion and Power, 27(2), 306e318.
Maadi, S. R., & Sepahi-Younsi, J. (2021). Effects of bleed type on the performance of a supersonic intake. Experimental Thermal and Fluid Science132, 110568.
Macheret, S. O., Shneider, M. N., & Miles, R. B. (2004). Scramjet inlet control by off-body energy addition: A virtual cowl. AIAA Journal, 42(11), 2294–2302.
Mattingly, J. D., & Von Ohain, H. (2006). Elements of propulsion: gas turbines and rockets. AIAA Reston, AIAA Education Series, USA.
Nagashima, T., Obokata, T., & Asanuma, T. (1972). Experiment of supersonic air intake buzz. Institute of Space and Aeronautical Science of Tokyo, Japan, Rept. No. 481, 37-7, 165-209.
Patel, M. P., Cain, A. B., Nelson, C. C., Corke, T. C., & Matlis, E. H. (2012). Shock generation and control using DBD plasma actuators. SBIR Phase I Final Report. NASA/CR—2012-217448.
Seddon, J., & Goldsmith, E. L. (1985). Intake Aerodynamics. Collins Publications.
Sepahi-Younsi, J., & Esmaeili, S. (2020). Performance enhancement of a supersonic air intake by applying a heat source. Journal of Aerospace Engineering. 33(5), 04020048,
Shyy, W., Jayaraman, B., & Andersson, A. (2002). Modeling of glow discharge-induced fluid dynamics. Journal of Applied Physics, 92(11), 6434-6443.
Soltani, M. R., & Sepahi-Younsi, J. (2015). Buzz cycle description in an axisymmetric mixed-compression air intake. AIAA Journal54(3), 1040-1053.
Soltani, M. R., Daliri, A., Younsi, J. S., & Farahani, M. (2016). Effects of bleed position on the stability of a supersonic inlet. Journal of Propulsion and Power32(5), 1153-1166.
Thomas, F. O., Corke, T. C., Iqbal, M., Kozlov, A., & Schatzman, D. (2009). Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA journal47(9), 2169-2178.
Trapier, S., Duveau, P., & Deck, S. (2006). Experimental study of supersonic inlet buzz. AIAA Journal, 44 (10).
Trapier, S., Duveau, P., & Deck, S. (2008). Delayed detached-eddy simulation and analysis of supersonic inlet buzz. AIAA Journal.
Vivek, P., & Mittal, S. (2009). Buzz instability in a mixed-compression air intake. Journal of Propulsion and Power, 25(3), 819–822.
Yoon, J. S., & Han, J. H. (2015). Semiempirical thrust model of dielectric barrier plasma actuator for flow control. Journal of Aerospace Engineering28(1), 04014041.