Numerical Simulation of H2 Addition Effect to CH4 Premixed Turbulent Flames for Gas Turbine Burner

Document Type : Regular Article


LEMI laboratory, Faculty of technology, M’hammed Bougara University, Frantz Fanon street, 35 100 Boumerdes, Algeria



Present computational simulation studied H2-CH4 combustion characteristics in a specific gas turbine combustor used for power generation. Across four thermal loads (1.1-4.4 bar) and varying hydrogen fraction (0-50% by volume), changes in flame temperature, reaction zone stability, and flow field are scrutinized. Results show coherent thermal patterns and stable flame fronts across all conditions, indicating hydrogen addition does not deteriorate combustion when blended with methane. Flame temperatures increase by approximately 40 K with increasing hydrogen fraction. Acceptable NOx emissions are observed, peaking at 6.20 ppm with 50 % H2 at 168 kW. The combustor enables reliable operation for blends up to 50% hydrogen. These results suggest potential for increasing legislated hydrogen blending limits for more sustainable gas turbine power generation. By expanding the viable envelope for hydrogen-methane mixtures, this work contributes to understanding combustion of decarbonized fuels in gas turbines. However, as results are limited to the investigated combustor geometry, generalized conclusions cannot be drawn at this stage. Nonetheless, this study represents an incremental advancement in knowledge that may inform future research on sustainable power generation and decarbonization efforts.


Main Subjects

Adamou, A., Turner, J., Costall, A., Jones, A., & Copeland, C. (2021). Design, simulation, and validation of additively manufactured high-temperature combustion chambers for micro gas turbines. Energy Conversion and Management, 248, 114805.
Agwu, O., Runyon, J., Goktepe, B., Chong, C. T., Ng, J. H., Giles, A., & Valera-Medina, A. (2020). Visualisation and performance evaluation of biodiesel/methane co-combustion in a swirl-stabilised gas turbine combustor. Fuel, 277, 118172.
Amani, E., Akbari, M. R., & Shahpouri, S. (2018). Multi-objective CFD optimizations of water spray injection in gas-turbine combustors. Fuel, 227, 267-278.
ANSYS Fluent Theory Guide, Release 17.2, ANSYS, Inc. (2016)
Baej, H., Akair, A., Diyaf, A., Adeilla, S., & Kraiem, A. (2018). Modeling effects of outlet nozzle geometry on swirling flows in gas turbine.
Benaissa, S., Adouane, B., Ali, S. M., Rashwan, S. S., & Aouachria, Z. (2022). Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors. Thermal Science and Engineering Progress, 27, 101178.
Boxx, I., Slabaugh, C., Kutne, P., Lucht, R. P., & Meier, W. (2015). 3 kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure. Proceedings of the Combustion Institute, 35(3), 3793-3802.
Bulat, G., Fedina, E., Fureby, C., Meier, W., & Stopper, U. (2015). Reacting flow in an industrial gas turbine combustor: LES and experimental analysis. Proceedings of the Combustion Institute, 35(3), 3175-3183.
Chen, F., Ruan, C., Yu, T., Cai, W., Mao, Y., & Lu, X. (2019). Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor. Aerospace Science and Technology, 92, 126-138.
Chen, Y., & Driscoll, J. F. (2016). A multi-chamber model of combustion instabilities and its assessment using kilohertz laser diagnostics in a gas turbine model combustor. Combustion and Flame, 174, 120-137.
Emami, M. D., Shahbazian, H., & Sunden, B. (2019). Effect of operational parameters on combustion and emissions in an industrial gas turbine combustor. Journal of Energy Resources Technology, 141(1), 012202.
Erdener, B. C., Sergi, B., Guerra, O. J., Chueca, A. L., Pambour, K., Brancucci, C., & Hodge, B. M. (2023). A review of technical and regulatory limits for hydrogen blending in natural gas pipelines. International Journal of Hydrogen Energy, 48(14), 5595-5617. https://doi./10.1016/j.ijhydene.2022.10.254
İlbaş, M., Karyeyen, S., & Yilmaz, İ. (2016). Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor. International Journal of Hydrogen Energy, 41(17), 7185-7191.
Kruse, S., Kerschgens, B., Berger, L., Varea, E., & Pitsch, H. (2015). Experimental and numerical study of MILD combustion for gas turbine applications. Applied Energy, 148, 456-465.
Kurata, O., Iki, N., Inoue, T., Matsunuma, T., Tsujimura, T., Furutani, H., Kawano, M., Arai, K., Okafor, E. C., Hayakawa, A. & Kobayashi, H. (2019). Development of a wide range-operable, rich-lean low-NOx combustor for NH3 fuel gas-turbine power generation. Proceedings of the combustion Institute, 37(4), 4587-4595.
Lee, M. C., Yoon, J., Joo, S., Kim, J., Hwang, J., & Yoon, Y. (2015). Investigation into the cause of high multi-mode combustion instability of H2/CO/CH4 syngas in a partially premixed gas turbine model combustor. Proceedings of the Combustion Institute, 35(3), 3263-3271.
Li, S., Zhang, S., Zhou, H., & Ren, Z. (2019). Analysis of air-staged combustion of NH3/CH4 mixture with low NOx emission at gas turbine conditions in model combustors. Fuel, 237, 50-59.
Liu, H., Wang, Y., Yu, T., Liu, H., Cai, W., & Weng, S. (2020). Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine. Renewable Energy, 147, 1299-1311.
Liu, Y., Sun, X., Sethi, V., Nalianda, D., Li, Y. G., & Wang, L. (2017). Review of modern low emissions combustion technologies for aero gas turbine engines. Progress in Aerospace Sciences, 94, 12-45.
Lokini, P., Roshan, D. K., & Kushari, A. (2019). Influence of swirl and primary zone airflow rate on the emissions and performance of a liquid-fueled gas turbine combustor. Journal of Energy Resources Technology, 141(6), 062009.
Mahto, N., & Chakravarthy, S. R. (2022). Response surface methodology for design of gas turbine combustor. Applied Thermal Engineering, 211, 118449.
Masrouri, M., Tahsini, A. M., & Vahabi, S. E. (2023). Coating roughness impact on the combustion chambers life of the turbo engines. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 09544100231181209.
Moraes, R. C., Dias, M. A., & Mendes Neto, L. J. (2022). Gas turbine combustor CFD study and single-objective DoE optimization. Numerical Heat Transfer, Part A: Applications, 82(11), 700-715.
Murthy, M. S. N., Bhadkamkar, N., Penumarti, A., Prabbu, S. V., & Sreedhara, S. (2018). Numerical investigation of swirl flow using different swirlers in a real-life gas turbine combustor. Journal of Flow Visualization and Image Processing, 25(2).
Nemitallah, M. A., Rashwan, S. S., Mansir, I. B., Abdelhafez, A. A., & Habib, M. A. (2018). Review of novel combustion techniques for clean power production in gas turbines. Energy & Fuels, 32(2), 979-1004.
Okafor, E. C., Somarathne, K. K. A., Hayakawa, A., Kudo, T., Kurata, O., Iki, N., & Kobayashi, H. (2019). Towards the development of an efficient low-NOx ammonia combustor for a micro gas turbine. Proceedings of the combustion institute, 37(4), 4597-4606.
Ouali, S., Bentebbiche, A. H., & Belmrabet, T. (2016). Numerical simulation of swirl and methane equivalence ratio effects on premixed turbulent flames and NOx apparitions. Journal of Applied Fluid Mechanics, 9(2), 987-998.
Pashchenko, D. (2024). Ammonia fired gas turbines: Recent advances and future perspectives. Energy, 290, 130275.
Psomoglou, I. (2023). Influence of surface roughness on burner characteristics and combustion performance of AM combustors [Doctoral dissertation, Cardiff University].
Rajabi, V., & Amani, E. (2019). A computational study of swirl number effects on entropy generation in gas turbine combustors. Heat Transfer Engineering, 40(3-4), 346-361.
Reale, F., & Sannino, R. (2021). Water and steam injection in micro gas turbine supplied by hydrogen enriched fuels: Numerical investigation and performance analysis. International Journal of Hydrogen Energy, 46(47), 24366-24381.
Runyon, J. O. N. (2017). Gas turbine fuel flexibility: pressurized swirl flame stability, thermoacoustics, and emissions [Doctoral dissertation, Cardiff University].
Runyon, J., Giles, A., Marsh, R., Pugh, D., Goktepe, B., Bowen, P., & Morris, S. (2020). Characterization of additive layer manufacturing swirl burner surface roughness and its effects on flame stability using high-speed diagnostics. Journal of Engineering for Gas Turbines and Power, 142(4), 041017.https://doi./10.1115/1.4044950
See, Y. C., & Ihme, M. (2015). Large eddy simulation of a partially-premixed gas turbine model combustor. Proceedings of the Combustion Institute, 35(2), 1225-1234.
Syred, N., Morris, S. M., Bowen, P. J., Valera-Medina, A., & Marsh, R. (2015). Preliminary results from a high pressure optical gas turbine combustor model with 3D viewing capability. 53rd AIAA Aerospace Sciences Meeting.
Valera-Medina, A., Marsh, R., Runyon, J., Pugh, D., Beasley, P., Hughes, T., & Bowen, P. (2017). Ammonia–methane combustion in tangential swirl burners for gas turbine power generation. Applied Energy, 185, 1362-1371. https://doi./10.1016/j.apenergy.2016.02.073
Zhang, H., Zhang, Z., Xiong, Y., Liu, Y., & Xiao, Y. (2018, June). Experimental and numerical investigations of MILD combustion in a model combustor applied for gas turbine. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers.
British Standard, I. S. O. (1996). 11042-1: 1996, Gas turbines. Exhaust gas emission Measurement and evaluation. British Standards Institution, UK.