Effect of Spherical Silver Particles Size of the Catalyst Bed on Hydrogen Peroxide Monopropellant Thruster Performance

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Energetic and Applied Thermal Laboratory ETAP, University of technology, Chetouane 13000, Tlemcen, Algeria

2 Satellites Development Center, Algerian Space Agency ASAL, IbnRochd USTO 31130, Oran, Algeria

10.47176/jafm.17.9.2349

Abstract

In this paper, an analytical approach combined with a two-dimensional computational fluid dynamics (CFD) model is pursued to simulate the fluid flow in a monopropellant thruster for satellite propulsion systems. The thruster utilizes hydrogen peroxide (H2O2) as a green propellant at a concentration of 87.5%, with a catalytic bed based on spherical silver particles. Through a parametric analysis of particle diameter, we aim to optimize the design of a monopropellant thruster capable of generating a thrust of 20N. For this purpose, a program in CFD code in the commercially available ANSYS Fluent software is used to solve the energy, momentum, mass transfer, and species transport equations governing the thruster system. The local thermal non-equilibrium (LTNE) approach is used to describe the heat transfer occurring through both the solid and fluid phases within the catalyst bed. The results demonstrate that particle size significantly affects the thermal behaviour, species mass fraction, and exit velocity. An optimum diameter of 0.65mm exhibits the optimal performance of the monopropellant thruster, ensuring efficient decomposition of H2O2 at 968K and providing the required level of thrust force with a specific impulse of about 120s. 

Keywords

Main Subjects


Abdedou, A., & Bouhadef, K. (2015). Comparison between Two Local Thermal Non Equilibrium Criteria in Forced Convection through a Porous Channel. Journal of Applied Fluid Mechanics, 8(3), 491-498. http://dx.doi.org/10.18869/acadpub.jafm.67.222.22233
Achenbach, E. (1995). Heat and flow characteristics of packed beds. Experimental Thermal and Fluid Science, 10, 17-27. https://doi.org/10.1016/B978-0-444-816191.50029-0
Adami, A., Mortazavi, M., & Nosratollahi, M. (2015). Multidisciplinary design optimization of hydrogen peroxide monopropellant propulsion system using GA and SQP. International Journal of Computer Applications, 113(9), 14–21. http://doi.org/10.5120/19853-1774
Alazmi, B., & Vafai, K. (2000). Analysis of variants within the porous media transport models. Journal of Heat Transfer, 122(2), 303-326. https://doi.org/10.1115/1.521468
Amiri, A., & Vafai, K. (1994). Analysis of dispersion effects and non-thermal equilibrium, non-darcian, variable porosity incompressible flow through porous media. International Journal of Heat and Mass Transfer, 37, 939-54. https://doi.org/10.1016/0017-9310%2894%2990219-4
Amiri, A., Vafai, K., & Kuzay, T. M. (1995). Effects of boundary conditions on non-darcian heat transfer through porous media and experimental comparisons. Numerical Heat Transfer, 27, 651-64. https://doi.org/10.1080/10407789508913724
Amri, R., Gibbon, D., & Rezoug, T. (2013). The design, development and test of one newton hydrogen peroxide monopropellant thruster. Aerospace Science and Technology, 25(1), 266-272. https://doi.org/10.1016/j.ast.2012.02.002
An, S., & Kwon, S. (2009). Scaling and evaluation of pt/al2o3 catalytic reactor for hydrogen peroxide monopropellant thruster. Journal of Propulsion and Power, 25(5), 1041-1045. http://dx.doi.org/10.2514/1.40822
An, S., Jin, J., Lee, J., Jo, S., Park, D., & Kwon, S. (2010). Chugging instability of H2O2 monopropellant thrusters with reactor aspect ratio and pressures. Journal of Propulsion and Power, 27(2), 422–427. http://dx.doi.org/10.2514/1.48939
Cervone, A., Torre, L., d'Agostino, L., Musker, A. J., Roberts, G. T., Bramanti, C., & Saccoccia, G. (2006, July). Development of Hydrogen Peroxide Monopropellant Rockets. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences. https://doi.org/10.2514/6.2006-5239
Chan, Y., Liu, H., Tseng, K., & Kuo, T. (2013). Preliminary development of a hydrogen peroxide thruster. International Journal of Aerospace and Mechanical Engineering, 7(7), 1546-1553. https://doi.org/10.5281/zenodo.1087287
Coxhill, I. (2002). An investigation of a low cost Bi-Propellant rocket engine for small satellites. [PhD. thesis, Surrey Space Centre School of Electronics and Physical Sciences, University of Surrey]. United Kingdom.
Dixon, A. G. (1988). Correlations for wall and particle shape effects on fixed bed bulk voidage. The Canadian Journal of Chemical Engineering, 66, 705–708. https://doi.org/10.1002/cjce.5450660501
Dixon, A. G., & Cresswell, D. L. (1979). Theoretical prediction of active heat transfer parameters in packed beds. AIChE Journal, 25, 663-76. https://doi.org/10.1002/AIC.690250413
Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48, 89–94. https://books.google.dz/books/about/Fluid_Flow_Through_Packed_Columns.html?id=37sgywEACAAJ&redir_esc=y
George, P. S. (2003). History of liquid-propellant rocket engines in russia, formerly the soviet union. Journal of Propultion and Power, 19(6). https://doi.org/10.2514/2.6943
Gibbon, D., Paul, M., Jolley, P., Zakirov, V.,  Haag, G., Coxhill, I., Sweeting, M., & Eloirdi, R. (2001). Energetic green propulsion for small spacecraft. AIAA, 2001-3247. https://doi.org/10.2514/6.2001-3247
Haq, N. U., Khan, R. A., & Mehmood, R. (2017). Design, development and testing of 1N Hydrogen Peroxide thruster. 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST) IEEE, 599-607. https://doi.org/10.1109/IBCAST.2017.7868112
Hwang, C. H., Lee, S., Baek, S, Han, C. Y., Kim, S. K., & Yu, M. J. (2012). Effects of catalyst bed failure on thermochemical phenomena for a hydrazine monopropellant thruster using Ir/Al2O3 catalysts. Industrial & Engineering Chemistry Research, 51(15), 5382−5393. https://doi.org/10.1021/ie202347f
Hwang, G. J., Wu, C. C., & Chao, C. H. (1995). Investigation of non-darcian forced convection in an asymmetrically heated sintered porous channel. J Heat Transfer, 117(3), 725-732.   https://doi.org/10.1115/1.2822636
Jayakrishnan, S., & Deepu, M. (2020). Reacting flow Simulations of a Dual Throat-Dual Fuel Thruster. Journal of Applied Fluid Mechanics, 14(1), 49-59. https://doi.org/10.47176/jafm.14.01.31329 
Jones, W., & Launder, B. (1973). The calculation of low-Reynolds-number phenomena with a two equation model of turbulence. International Journal of Heat and Mass Transfer, 16(6), 1119-1130. https://doi.org/10.1016/00179310(73)90125-7
Koopmans, R. J., Shrimpton, J. S., Robert, G. T., & Musker, A. J. (2014). Dependence of pellet shape and size on pressure drop in H2O2 thrusters. Journal of Propulsion and Power, 30(3), 775–789. http://dx.doi.org/10.2514/1.B35072
Kouichi, K. (2008). Modeling of composite heat transfer in open-cellular porous materials at hight temperatures. In Book: Cellular and Porous Materials: Thermal Properties Simulation and Prediction, 165-198. https://doi.org/10.1002/9783527621408.ch6
Krejci, D., Woschnak, A., Scharlemann, C., & Ponweirser, K. (2011). Hydrogen peroxide decomposition for micro propulsion: Simulation and experimental verification. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 5855. https://doi.org/10.2514/6.2011-5855
Kuan, C. K., Chen, G. B., & Chao, Y. C. (2007). Development and ground tests of a 100-millinewton hydrogen peroxide monopropellant microthruster. Journal of Propulsion and Power23(6), 1313-1320. https://doi.org/10.2514/1.30440
Lee, S. L., & Lee, C. (2009). Performance characteristics of silver catalyst bed for hydrogen peroxide. Aerospace Science and Technology, 13(1), 12-17. https://doi.org/10.1016/j.ast.2008.02.007
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605. https://doi.org/10.2514/3.12149
Morlan, P., Wu, P., Nejad, A., Ruttle, D., & Fuller, F, (1999). Catalyst development for hydrogen peroxide rocket engines. AIAA, 1999-2740. https://doi.org/10.2514/6.1999-2740
Muhammad, S. S. N., Othman, N., Ahmad, N., Mohd, R. N., Wahid, M. A., & Zarhamdy, M. M. Z. (2021). Porosity effect of the silver catalyst in hydrogen peroxide monopropellant thruster. Journal of CFD Letters, 13(12), 1-20. https://doi.org/10.37934/cfdl.13.12.120
Musker, A. J., Rusek, J. J., Kappenstein, G. T., & Roberts, C. (2006, September). Hydrogen peroxide-from bridesmaid to bride for space propulsion.  Proc. of the 3rd International Conference on Green Propellants, Poitiers, France. http://eprints.soton.ac.uk/id/eprint/43655
Palmer, M. J. (2014). Experimental evaluation of hydrogen peroxide catalysts for monopropellant attitude control thrusters [PhD. thesis, University of Southampton]. Faculty of Engineering and the Environment, United Kingdom. http://eprints.soton.ac.uk/id/eprint/385352
Pasini, A., Torre, L., Romeo, L., Cervone, A., & d’Agostino, L. (2008). Testing and characterization of a hydrogen peroxide monopropellant thruster. Journal of Propulsion and Power, 24(3), 507–515. http://dx.doi.org/10.2514/1.33121
Pędziwiatr, P., Mikołajczyk, F., Zawadzki, D., Mikołajczyk, K., & Bedka, A. (2018). Decomposition of hydrogen peroxide-kinetics and review of chosen catalysts.  Acta Innovations, 26(5), 45-52. https://doi.org/10.32933/ACTAINNOVATIONS.26.5
Runckel, J. F., Willis, C. M., & Salters, L. B. (1963). Investigation of catalyst beds for 98-percent-concentration hydrogen peroxide. NASA TN D-1808, Washington.
Rusek, J. J. (1996). New decomposition catalysts and characterization techniques for rocket-grade hydrogen peroxide. Journal of Propulsion and Power, 12(3), 574–580. https://doi.org/10.2514/3.24071
Ryan, C. N., Fonda, M. E., & Roberts, G. (2020). Experimental validation of a 1 newton hydrogen peroxide thruster. Journal of Propulsion and Power, 36(2). 1-9. http://dx.doi.org/10.2514/1.B37418
Sippel, T., Shark. S., Hinkelman, M., & Heister, S. (2011). Hypergolic ignition of metal hydride-based fuels with hydrogen peroxide. 7th US National Combustion Meeting, Atlanta. https://www.researchgate.net/publication/265727021
Soejima, M., Nojim, K., Tomioka, S., & Sakuranaka, N. (2016).  Development of the fuel heating device for the component test of aerospace propulsion systems, Journal of Fluid Science and Technology, 11(1), 1-10. https://doi.org/10.1299/jfst.2016jf
Srivastava, A. K., & Bhadauria, B. S. (2016). Influence of magnetic field on fingering instability in a porous medium with cross-diffusion effect: a thermal non-equilibrium approach. Journal of Applied Fluid Mechanics, 9(6), 2845-2853. http://dx.doi.org/10.29252/jafm.09.06.25977
Theuerkauf, J., Witt, P., & Schwesig, D. (2006). Analysis of particle porosity distribution in fixed beds using the discrete element method. Powder Technology, 165(2), 92–99. https://doi.org/10.1016/j.powtec.2006.03.022
Vafai, K., & Amiri, A. (1998). Non-Darcian effects in confined forced convective flows. Transport Phenomena in Porous Media, 1, 313-329. https://doi.org/10.1016/b978-008042843-7/50013-1
Ventura, M., & Wernimont, E. (2001, July). Advancements in high concentration hydrogen peroxide catalyst beds. 37th AIAA/ASME/SAE/ASEE, Joint Propulsion Conference, Salt Lake City, Utah. https://doi.org/10.2514/6.2001-3250
Vestnes, F. (2016). A CFD-model of the fluid flow in a hydrogen peroxide monopropellant rocket engine in ANSYS fluent 16.2 [Master's thesis, University of Science and Technology Norwegian]. http://hdl.handle.net/11250/2408892
Villafán, V. H., Stéphane, A., Cyril, C., & Romero, P. H.  (2011). Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver. Applied Thermal Engineering, 31(16), 3377-3386. https://doi.org/10.1016/j.applthermaleng.2011.06.022
Walter, H. (1956). Hydrogen Peroxide Rockets. In T. Benecke & A. W. Quick (Eds.), History of german guided missile developments, AGARDo graph,Vol. 20, Butter worths, London.
White, F.  M. (2006). Fluid Mechanics, McGraw-Hill. 7th edition, New York, USA.
Wilcox, D. C. (1998). Turbulence modeling for CFD. Second Edition, D.C.W. Industries.
Xu, C., Song, Z., & Zhen, Y. (2011). Numerical investigation on porous media heat transfer in a solar tower receiver. Renewable Energy, 36(3), 1138-1144. https://doi.org/10.1016/j.renene.2010.09.017
Xue, L., Guo, X., & Chen, H. (2020). Fluid Flow in Porous Media. Chapter 2: Basic theory. World Scientific, p 408. https://doi.org/10.1142/11805