Abbasi, S., & Gholamalipour, A. (2020). Parametric study of injection from the casing in an axial turbine. 
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 
234(5), 582-593. 
https://doi.org/10.1177/0957650919877276
                                                                                                                 Abbasi, S., & Gholamalipour, A. (2021). Performance optimization of an axial turbine with a casing injection based on response surface methodology. 
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 
43(9), 435. 
https://doi.org/10.1007/s40430-021-03155-6
                                                                                                                 Ai, W., & Fletcher, T. H. (2012). Computational analysis of conjugate heat transfer and particulate deposition on a high pressure turbine vane. 
ASME. J. Turbomach, 134(4), 041020. 
https://doi.org/10.1115/1.4003716
                                                                                                                 Ai, W., Murray, N., Fletcher, T. H., Harding, S., & Bons, J. P. (2011). Effect of hole spacing on deposition of fine coal flyash near film cooling holes. 
Journal of Turbomachinery, 134(4), 041021. 
https://doi.org/10.1115/1.4003717
                                                                                                                 Albert, J. E., & Bogard, D. G. (2012). Experimental simulation of contaminant deposition on a film cooled turbine airfoil leading edge. 
Journal of Turbomachinery, 134(5), 051014. 
https://doi.org/10.1115/1.4003964
                                                                                                                 Albert, J. E., & Bogard, D. G. (2013). Experimental simulation of contaminant deposition on a film-cooled turbine vane pressure side with a trench. 
Journal of Turbomachinery, 135(5), 051008. 
https://doi.org/10.1115/1.4007821
                                                                                                                 Barker, B., Casaday, B., Shankara, P., Ameri, A., & Bons, J. P. (2012). Coal ash deposition on nozzle guide vanes—part ii: computational modeling. 
Journal of Turbomachinery. 
https://doi.org/10.1115/1.4006399
                                                                                                                 Bonilla, C., Clum, C., Lawrence, M., Casaday, B., & Bons, J. P. (2013). 
The effect of film cooling on nozzle guide vane deposition. Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 3B: Heat Transfer. San Antonio, Texas, USA. June 3–7, 2013. V03BT13A043. ASME. 
https://doi.org/10.1115/GT2013-95081
                                                                                                                 Bonilla, C., Webb, J., Clum, C., Casaday, B., Brewer, E., & Bons, J. P. (2012). The effect of particle size and film cooling on nozzle guide vane deposition. 
ASME. J. Eng. Gas Turbines Power, 134(10), 101901. 
https://doi.org/10.1115/1.4007057
                                                                                                                                                                                                                                 Bons, J. P., Prenter, R., & Whitaker, S. (2017). A Simple physics-based model for particle rebound and deposition in turbomachinery. 
Journal of Turbomachinery, 
139(8), 081009. 
https://doi.org/10.1115/1.4035921
                                                                                                                 Borello, D, Capobianchi, P, De Petris, M, Rispoli, F, & Venturini, P. (2014). 
Unsteady RANS analysis of particles deposition in the coolant channel of a gas turbine blade using a non-linear model. Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5A: Heat Transfer. Düsseldorf, Germany. June 16–20, 2014. V05AT12A035. ASME. 
https://doi.org/10.1115/GT2014-26252
                                                                                                                                                                                                                                 Crosby, J. M., Lewis, S., Bons, J. P., Ai, W., & Fletcher, T. H. (2008). Effects of temperature and particle size on deposition in land based turbines. 
Journal of Engineering for Gas Turbines & Power, 
130(5), 819-825. 
https://doi.org/10.1115/1.290390
                                                                                                                 Dunn, M. G. (2012). Operation of gas turbine engines in an environment contaminated with volcanic ash. 
Journal of Turbomachinery, 
134(5), 051001. 
https://doi.org/10.1115/1.4006236
                                                                                                                 El-Batsh, H., & Haselbacher, H. (2002) 
Numerical investigation of the effect of ash particle deposition on the flow field through turbine cascades. Proceedings of the ASME Turbo Expo 2002: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2002, Parts A and B. Amsterdam, The Netherlands. June 3–6, 2002. pp. 1035-1043. ASME. 
https://doi.org/10.1115/GT2002-30600
                                                                                                                 Hao, Z., Yang, X., & Feng, Z. (2023). Unsteady modeling of particle deposition effects on aerodynamics and heat transfer in turbine stator passages with mesh morphing. 
International Journal of Thermal Sciences, 190, 108326. 
https://doi.org/10.1016/j.ijthermalsci.2023.108326
                                                                                                                                                                                                                                 Jensen, J. W., Squire, S. W., Bons, J. P., & Fletcher, T. H. (2004). Simulated land-based turbine deposits generated in an accelerated deposition facility. 
Journal of Turbomachinery, 
127(3), 462–470. 
https://doi.org/10.1115/1.1860380
                                                                                                                 Kim, J., Dunn, M. G., Baran, A. J., Wade, D. P., & Tremba, E. L. (1993). Deposition of volcanic materials in the hot sections of two gas turbine engines. 
Journal of Engineering for Gas Turbines and Power, 115(3), 641–651. 
https://doi.org/10.1115/1.2906754
                                                                                                                 Kistenmacher, D. A., Davidson, F. T., & Bogard, D. G. (2013). Realistic trench film cooling with a thermal barrier coating and deposition. 
American Society of Mechanical Engineers, (9). 
https://doi.org/10.1115/1.4026613
                                                                                                                 Lawson, S. A., & Thole, K. A. (2010, October). 
Simulations of multi-phase particle deposition on endwall film-cooling. Turbo Expo: Power for Land, Sea, and Air. (Vol. 43994, pp. 151-162). 
https://doi.org/10.1115/GT2010-22376
                                                                                                                                                                                                                                 Lawson, S. A., Thole, K. A., Okita, Y., & Nakamata, C. (2012). Simulations of multiphase particle deposition on a showerhead with staggered film-cooling holes. 
Journal of Turbomachinery, 134(5), 051041. 
https://doi.org/10.1115/1.4004757
                                                                                                                 Lewis, S., Barker, B., Bons, J. P., Ai, W., & Fletcher, T. H. (2010). Film cooling effectiveness and heat transfer near deposit-laden film holes. 
Journal of Turbomachinery, 133(3), 031003. 
https://doi.org/10.1115/1.4001190
                                                                                                                 Lee, S., Hwang, W., & Yee, K. (2018). Robust design optimization of a turbine blade film cooling hole affected by roughness and blockage. International Journal of Thermal Sciences, 133, 216-229.
                                                                                                                Liu, C. L., Xie, G., Wang, R., & Ye, L. (2018). Study on analogy principle of overall cooling effectiveness for composite cooling structures with impingement and effusion. 
International Journal of Heat and Mass Transfer, 
127 (PT.B), 639-650. 
https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.085
                                                                                                                 Lundgreen, R., Sacco, C., Prenter, R., & Bons, J. P. (2016). 
Temperature effects on nozzle guide vane deposition in a new turbine cascade rig. Turbo Expo: Power for Land, Sea, and Air (Vol. 49781, p. V05AT13A021). American Society of Mechanical Engineers. 
https://doi.org/10.1115/GT2016-57560
                                                                                                                 Maikell, J., Bogard, D., Piggush, J., & Kohli, A. (2011). Experimental simulation of a film cooled turbine blade leading edge including thermal barrier coating effects. 
Lewis 133(1), 011014. 
https://doi.org/10.1115/1.4000537
                                                                                                                 Senior, C. L., & Srinivasachar, S. (1995). Viscosity of ash particles in combustion systems for prediction of particle sticking. 
Energy & Fuels, 9(2), 277-283.  
https://doi.org/10.1021/ef00050a010
                                                                                                                                                                                                                                 Sundaram, N., Barringer, M. D., & Thole, K. A. (2008). Effects of deposits on film cooling of a vane endwall along the pressure side. 
Journal of Turbomachinery, 
130(4), 786-791. 
https://doi.org/10.1115/1.2812332
                                                                                                                 Vali, S. E., & Abbasi, S. (2022). Hypersonic drag and heat reduction mechanism of a new hybrid method of spike, multi-row discs and opposing jets aerodynamic configuration. 
International Journal of Heat and Mass Transfer, 
194, 123034. 
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123034
                                                                                                                 Vali, S. E., & Abbasi, S. (2024). Heat and drag reduction on the hypersonic nose with a nexus between active and passive control methods. 
Physics of Fluids, 
36(1). 
https://doi.org/10.1063/5.0176555
                                                                                                                                                                                                                                 Yang, X., Hao, Z., Feng, Z. (2021a). Variations of cooling performance on turbine vanes due to incipient particle deposition. 
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 235(8), 1832-1846. 
https://doi.org/10.1177/09576509211010530
                                                                                                                                                                                                                                 Zhang, F., Liu, Z., Liu, Z., & Diao, W. (2020). Experimental study of sand particle deposition on a film-cooled turbine blade at different gas temperatures and angles of attack. 
Energies, 
13(4), 811. 
https://doi.org/10.3390/en13040811