Alvi, F. S., & Settles, G. S. (1992). Physical model of swept shock wave/boundary layer interaction flowfield, 
AIAA Journal, 
30(9), 2252-2258. 
https://doi.org/10.2514/3.11212
                                                                                                                 Ansys (2020). Introduction to Fluent, ANSYS Fluent Theory Manual.
                                                                                                                Brosh, A., Kussoy, M. I., & Hung, C. M. (1985). Experimental and numerical investigation of a shock wave impingementon a cylinder. 
AIAA Journal, 23(6), 840-846. 
https://doi.org/10.2514/3.8996
                                                                                                                 Cenko, A., & Waskiewicz, J. (1983). Recent improvements in prediction techniques for supersonic weapon separation. 
Journal of Aircraft, 
20(8), 659-666. 
https://doi.org/10.2514/3.44926
                                                                                                                 Chaplin, R., MacManus, D., Leopold, F., Martinez, B., Gauthier, T., & Birch. T. (2011). Computational and experimental investigation into aerodynamic interference between slender bodies in supersonic flow. 
Computers & Fluids. 50, 155–174. 
https://doi.org/10.1016/j.compfluid.2011.07.009
                                                                                                                 Dolling, D. S. (2001). Fifty years of shock-wave boundary layer interaction research: what next?, 
AIAA Journal, 
39(8), 1517-1531. 
https://doi.org/10.2514/2.1476
                                                                                                                 Gai, S. L., & Teh, S. L. (2000). Interaction between a conical shock wave and a planar oundary layer. 
AIAA Journal, 
38(5), 804-811. 
https://doi.org/10.2514/2.1060
                                                                                                                 Ijas Muhammed, V V., Shamsia Banu, N., Suryan, A., Lijo, V., Simurda, D. & Kim, H. D. (2024). Computational study of flow separation in truncated ideal contour nozzles under high-altitude conditions. 
International Journal of Fluid Engineering, 1, 013101. https://doi.org/10.1063/5.0190399
                                                                                                                 Jin, Y. & V. Kuznetsov, A. (2024). Multiscale modeling and simulation of turbulent flows in porous media. 
International Journal of Fluid Engineering, 1, 010601. https://doi.org/10.1063/5.0190279
                                                                                                                 Knight, D. D., Horstman, C. C., Shapey, B., & Bogdonoff, S. (1987). Structure of supersonic turbulent flow past a sharp fin. 
AIAA Journal, 
25(10), 1331-1337. 
https://doi.org/10.2514/3.9787
                                                                                                                 Kussoy, M. I., Viegas, J. R., & Horstman, C. C. (1980). Investigation of a three-dimensional shock wave separated boundary layer. 
AIAA Journal, 18(12), 1477-1484. 
https://doi.org/10.2514/3.50907
                                                                                                                 Newman, G., Fulcher, K., Ray, R., & Pinney, M. (1992). 
On the aerodynamics/dynamics of store separation from a hypersonic aircraft. 10th AIAA Applied Aerodynamics Conference, Palo Alto, CA, U.S.A. 
https://doi.org/10.2514/6.1992-2722
                                                                                                                 Pickles, J. D., Mettu, B. R., Subbareddy, P. K., & Narayanaswamy, V. (2017). 
Sharp-Fin Induced Shock Wave/Turbulent Boundary Layer Interactions in an Axisymmetric Configuration. 47th AIAA Fluid Dynamics Conference, Denver, Colorado. 
https://doi.org/10.2514/6.2017-4314 AIAA 2017-4314
                                                                                                                 Pickles, J. D., Subbareddy, P. K., & Narayanaswamy, V. (2016). 
Sharp-Fin Induced Shock Wave/Turbulent Boundary Layer Interactions in an Axisymmetric Configuration. 46th AIAA Fluid Dynamics Conference, Washington, D.C. 
https://doi.org/10.2514/6.2016-3340
                                                                                                                 Pointwise (2019). Pointwise user manual, V18.3, Pointwise, Texas, USA.
                                                                                                                Robertson, G., Kumar, R., Eymann, T., & Morton, S. (2015). 
Experimental and Numerical Study of Shock-Wave Boundary Layer Interactions on an Axisymmetric Body. 45th AIAA Fluid Dynamics Conference, Dallas, TX. 
https://doi.org/10.2514/6.2015-2935
                                                                                                                                                                                                                                 Stephen, E., Farnsworth, J. A. N., Porter, C. O., Decker, R., McLaughlin, T., & Dudley, J. G. (2013). 
Impinging Shock-Wave Boundary-Layer Interactions on a Three-Dimensional Body. 43rd AIAA Fluid Dynamics Conference, San Diego, CA. 
https://doi.org/10.2514/6.2013-2733
                                                                                                                 Tutty, O. R., Price, W. G., & Parsons, A. T. (2002). Boundary layer flow on a long thin cylinder. Physics of Fluids, 14(2), 628-637. http://dx.doi.org/10.1063/1.1427921
                                                                                                                Waskiewicz, J. D., DeJongh, J. E., & Cenko, A. (1983). Application of panel methods to external stores at supersonic speeds. 
Journal of Aircraft, 20(2), 153- 158. 
https://doi.org/10.2514/3.44844
                                                                                                                 Wilcox, F. J. Jr. (1995). Separation characteristics of generic stores from lee side of an inclined flat plate at Mach 6. NASA TM 4652.
                                                                                                                Zheltovodov, A. A. (1982). Regimes and properties of three-dimensional separation flows initiated by skewed compression shocks. 
Journal of Applied Mechanics and Technical Physics, 
23(3), 413-418. 
https://doi.org/10.1007/BF00910085