Abu-Farah, L., Haidn, O. J., & Kau, H. P. (2014). Numerical simulations of single and multi-staged injection of H2 in a supersonic scramjet combustor. 
Propulsion and Power Research, 
3(4), 175–186. 
https://doi.org/10.1016/j.jppr.2014.12.001
Assis, S. M., Jeyakumar, S., & Jayaraman, K. (2019). The effect of transverse injection upstream of an axisymmetric aft wall angled cavity in a supersonic flow field. 
Journal of Physics: Conference Series, 
1276(1). 
https://doi.org/10.1088/1742-6596/1276/1/012019
Athithan, A. A., & Jeyakumar, S. (2022). Numerical investigations on the influence of double ramps in a strut based scramjet combustor. 
International Journal of Engine Research, 
0(0), 14680874221107136. 
https://doi.org/10.1177/14680874221107137
Athithan, A. A., Jeyakumar, S., Sczygiol, N., Urbanski, M., & Hariharasudan, A. (2021). The combustion characteristics of double ramps in a strut-based scramjet combustor. 
Energies, 
14(4), 831. 
https://doi.org/10.3390/en14040831
Ben-Yakar, A., & Hanson, R. K. (2001). Cavity flame-holders for ignition and flame stabilization in scramjets: An overview. 
Journal of Propulsion and Power, 
17(4), 869–877. 
https://doi.org/10.2514/2.5818
Chang, L., Yang, C., Su, X., Dai, X., Xu, Q., & Guo, L. (2024). Investigations on affinity law under gas–liquid conditions in multistage radial and mixed-flow multiphase pumps. 
International Journal of Fluid Engineering, 
1(1). 
https://doi.org/10.1063/5.0191201
Choubey, G., Solanki, M., Bhatt, T., Kshitij, G., Yuvarajan, D., & Huang, W. (2023). Numerical investigation on a typical scramjet combustor using cavity floor H2 fuel injection strategy. 
Acta Astronautica, 
202, 373–385. 
https://doi.org/https://doi.org/10.1016/j.actaastro.2022.10.055
Clark, R. J., & Bade Shrestha, S. O. (2015). A review of numerical simulation and modeling of combustion in scramjets. 
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 
229(5), 958–980. 
https://doi.org/10.1177/0954410014541249
Doster, J. C., King, P. I., Gruber, M. R., & Maple, R. C. (2007). Pylon fuel injector design for a scramjet combustor. AIAA Paper 2007-5404.
                                                                                                                                                                                                                                Gao, J., Yuan, Z., Hou, Y., & Chen, W. (2024). Numerical study on the influence of plugging rate on the performance of adjustable steam ejector. 
International Journal of Fluid Engineering, 
1(2). 
https://doi.org/10.1063/5.0204421
Génin, F., & Menon, S. (2010). Simulation of turbulent mixing behind a strut injector in supersonic flow. 
AIAA Journal, 
48(3), 526–539. 
https://doi.org/10.2514/1.43647
Gerlinger, P., & Bruggemann, D. (2000). Numerical investigation of hydrogen strut injections into supersonic airflows. 
Journal of Propulsion and Power, 
16(1), 22–28. 
https://doi.org/10.2514/2.5559
Goyne, C. P., McDaniel, J. C., Quagliaroli, T. M., Krauss, R. H., & Day, S. W. (2001). Dual-mode combustion of hydrogen in a Mach 5, continuous-flow facility. 
Journal of Propulsion and Power, 
17(6), 1313–1318. 
https://doi.org/10.2514/2.5880
Gruber, M. R., Carter, C. D., Montes, D. R., Haubelt, L. C., King, P. I., & Hsu, K. Y. (2008). Experimental studies of pylon-aided fuel injection into a supersonic crossflow. 
Journal of Propulsion and Power, 
24(3), 460–470. 
https://doi.org/10.2514/1.32231
Guerra, R., Waidmann, W., & Laible, C. (1991). An experimental investigation of the combustion of a hydrogen jet injected parallel in a supersonic air stream. 
AIAA Paper 91-5102. 
https://doi.org/10.2514/6.1991-5102
Huang, W. (2014). Design exploration of three-dimensional transverse jet in a supersonic crossflow based on data mining and multi-objective design optimization approaches. 
International Journal of Hydrogen Energy, 
39(8), 3914–3925. 
https://doi.org/10.1016/j.ijhydene.2013.12.129
Huang, W. (2015). Investigation on the effect of strut configurations and locations on the combustion performance of a typical scramjet combustor. 
Journal of Mechanical Science and Technology, 
29(12), 5485–5496. 
https://doi.org/10.1007/s12206-015-1150-6
Huang, W., Luo, S. Bin, Liu, J., & Wang, Z. G. (2010). Effect of cavity flame holder configuration on combustion flow field performance of integrated hypersonic vehicle. 
Science China Technological Sciences, 
53(10), 2725–2733. 
https://doi.org/10.1007/s11431-010-4062-9
Huang, W., Wang, Z. G., Li, S. Bin, & Liu, W. D. (2012). Influences of H2O mass fraction and chemical kinetics mechanism on the turbulent diffusion combustion of H2-O2 in supersonic flows. 
Acta Astronautica, 
76, 51–59. 
https://doi.org/10.1016/j.actaastro.2012.02.017
Huang, W., Wu, H., Yang, Y. guang, Yan, L., & Li, S. bin. (2020). Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows. 
Acta Astronautica, 
174(May), 103–122. 
https://doi.org/10.1016/j.actaastro.2020.05.001
Ivanova, E. M., Noll, B. E., & Aigner, M. (2013). A numerical study on the turbulent schmidt numbers in a jet in crossflow. 
Journal of Engineering for Gas Turbines and Power, 
135(1), 1–10. 
https://doi.org/10.1115/1.4007374
Jeyakumar, S., Assis, S. M., & Jayaraman, K. (2017). Experimental study on the characteristics of axisymmetric cavity actuated supersonic flow. 
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 
231(14), 2570–2577. 
https://doi.org/10.1177/0954410016667149
Jeyakumar, S., Assis, S. M., & Jayaraman, K. (2018). Effect of axisymmetric aft wall angle cavity in supersonic flow field. 
International Journal of Turbo and Jet Engines, 
35(1), 29–34. 
https://doi.org/10.1515/tjj-2016-0027
Jeyakumar, S., Balachandran, P., & Indira, S. (2006). Experimental investigations on supersonic stream past axisymmetric cavities. 
Journal of Propulsion and Power, 
22(5), 1141–1144. 
https://doi.org/10.2514/1.21024
Jeyakumar, S., Kandasamy, J., Karaca, M., Karthik, K., & Sivakumar, R. (2021). Effect of hydrogen jets in supersonic mixing using strut injection schemes. 
International Journal of Hydrogen Energy, 
46(44), 23013–23025. 
https://doi.org/https://doi.org/10.1016/j.ijhydene.2021.04.123
Lakka, S., Randive, P., & Pandey, K. M. (2021). Implication of geometrical configuration of cavity on combustion performance in a strut-based scramjet combustor. 
Acta Astronautica, 
178, 793–804. 
https://doi.org/10.1016/j.actaastro.2020.08.040
Lee, S. (2012). Mixing Augmentation with Cooled Pylon Injection in a Scramjet Combustor. 
Journal of Propulsion and Power, 
28(3), 477–485. 
https://doi.org/10.2514/1.B34220
Liu, J. L., & Zhu, A. M. (2024). Bi-reforming with a ratio of CH4/CO2/H2O = 3/1/2 by gliding arc plasma catalysis for power to fuels. 
International Journal of Fluid Engineering, 
1(2). 
https://doi.org/10.1063/5.0197581
Liu, M., Sun, M., Yang, D., Zhao, G., Tang, T., An, B., & Wang, H. (2023). Mixing and combustion characteristics in a scramjet combustor with different distances between cavity and backward-facing step. 
Chinese Journal of Aeronautics. 
https://doi.org/https://doi.org/10.1016/j.cja.2023.04.013
Magnussen, B. F., & Hjertager, B. H. (1976). On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. 
16th Symposium (International) on Combustion,The Combustion Institute, 
16(1), 719–729. 
https://doi.org/doi:10.1016/S0082-0784(77)80366-4
Moorthy, J. V. S., Rajinikanth, B., Charyulu, B. V. N., & Amba Prasad Rao, G. (2014). Effect of ramp-cavity on hydrogen fueled scramjet combustor. 
Propulsion and Power Research, 
3(1), 22–28. 
https://doi.org/10.1016/j.jppr.2014.01.001
Muhammed, I., N, S. B., Suryan, A., Lijo, V., Simurda, D., & Kim, H. D. (2024). Computational study of flow separation in truncated ideal contour nozzles under high-altitude conditions. 
International Journal of Fluid Engineering, 
1(1). 
https://doi.org/10.1063/5.0190399
Ou, M., Yan, L., Huang, W., Li, S. bin, & Li, L. quan. (2018). Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows. 
International Journal of Heat and Mass Transfer, 
126, 10–31. 
https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.013
Soni, R. K., & De, A. (2017). Investigation of strut-ramp injector in a Scramjet combustor: Effect of strut geometry, fuel and jet diameter on mixing characteristics. 
Journal of Mechanical Science and Technology, 
31(3), 1169–1179. 
https://doi.org/10.1007/s12206-017-0215-0
Suneetha, L., Randive, P., & Pandey, K. M. (2019). Numerical investigation on implication of dual cavity on combustion characteristics in strut based scramjet combustor. 
International Journal of Hydrogen Energy, 
44(60), 32080–32094. 
https://doi.org/10.1016/j.ijhydene.2019.10.064
Suppandipillai, J., Kandasamy, J., Sivakumar, R., Karaca, M., & K, K. (2021). Numerical investigations on the hydrogen jet pressure variations in a strut based scramjet combustor. 
Aircraft Engineering and Aerospace Technology, 
93(4), 566–578. 
https://doi.org/10.1108/AEAT-08-2020-0162
Thakur, A., Thillai, N., & Sinha, A. (2021). Combustion enhancement in rearward step based scramjet combustor by air injection at step base. 
Propulsion and Power Research, 
10(3), 224–234. 
https://doi.org/10.1016/j.jppr.2021.09.003
Waidmann, W., Alff, F., Böhm, M., Brummund, U., Clauß, W., & Oschwald, M. (1995). Supersonic combustion of hydrogen/air in a scramjet combustion chamber. Space Technology, 15(6), 421–429.
                                                                                                                Waidmann, W., Alff, F., Brummund, U., Bohm, M., Clauss, W., & Oschwald, M. (1994). Experimental investigation of the combustion process in a supersonic combustion ramjet (Scramjet). Jahrestagung, Erlangen, Germany: DGLR, 62 9-38.
                                                                                                                Wang, T., Li, G., Yang, Y., Wang, Z., Cai, Z., & Sun, M. (2020). Combustion modes periodical transition in a hydrogen-fueled scramjet combustor with rear-wall-expansion cavity flameholder. In 
International Journal of Hydrogen Energy (Vol. 45, Issue 4, pp. 3209–3215). 
https://doi.org/10.1016/j.ijhydene.2019.11.118
Xi, W., Xu, M., Liu, C., Liu, J., & Sunden, B. (2022). Generation and propagation characteristics of an auto-ignition flame kernel caused by the oblique shock in a supersonic flow regime. 
Energies, 
15(9). 
https://doi.org/10.3390/en15093356
Xue, R., Wei, X., He, G., Hu, C., & Tang, X. (2017). Effect of parallel-jet addition on the shock train characteristics in a central-strut isolator by detached eddy simulation. 
International Journal of Heat and Mass Transfer, 
114, 1159–1168. 
https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.074
Zhang, J., Feng, G., Bai, H., Lv, K., & Bao, W. (2023). Research on combustion characteristics of scramjet combustor with different flight dynamic pressure conditions. 
Propulsion and Power Research, 
12(1), 69–82. 
https://doi.org/10.1016/j.jppr.2023.02.006
Zhang, R. rui, Huang, W., Li, L. quan, Yan, L., & Moradi, R. (2018). Drag and heat flux reduction induced by the pulsed counterflowing jet with different periods on a blunt body in supersonic flows. 
International Journal of Heat and Mass Transfer, 
127, 503–512. 
https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.066