Adawy, M. E., Heikal, M., Aziz, A. R., Munir, S., Siddiqui, M. I., & Mobility, E. (2018). Effect of boost pressure on the in-cylinder tumble- motion of GDI engine under steady-state conditions using Stereoscopic-PIV. 
Journal of Applied Fluid Mechanics, 
11(3), 733-742. 
https://doi.org/10.18869/ACADPUB.JAFM.73.246.28506.
                                                                                                                 Akutsu, T., & Fukuda, T. (2005). Time-resolved particle image velocimetry and laser doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses. 
Journal of Artificial Organs, 
8(3), 171-183. 
https://doi.org/10.1007/s10047-005-0298-8.
                                                                                                                 Akutsu, T., & Matsumoto, A. (2010). Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta. 
Journal of Artificial Organs, (4), 207-217. 
https://doi.org/10.1007/s10047-010-0519-7.
                                                                                                                 Akutsu, T., & Saito, J. (2006). Dynamic particle image velocimetry flow analysis of the flow field immediately downstream of bileaflet mechanical mitral prostheses. 
Journal of Artificial Organs, 
9(3), 165-178. 
https://doi.org/10.1007/s10047-006-0340-5.
                                                                                                                 Akutsu, T., Saito, J., Imai, R., Suzuki, T. X., & Cao, X. D. (2008). Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses. 
Journal of Artificial Organs, 
11(2), 75-90. 
https://doi.org/10.1007/s10047-008-0410-y.
                                                                                                                                                                                                                                 Chandran, K. B., Khalighi, B., & Chen, C. J. (1985). Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta-I. Caged ball valves. 
Journal of Biomechanics, 
10(18), 763-765. 
https://doi.org/10.1016/0021-9290(85)90051-X.
                                                                                                                 Chew, Y. T., Low, H. T., Lee, C. N., & Kwa, S. S. (1993). Laser anemometry measurements of steady flow past aortic valve prostheses. 
Journal of Biomechanical Engineering, 
115(3), 290-298. 
https://doi.org/10.1115/1.2895489.
                                                                                                                                                                                                                                 Dasi, L. P., Simon, H. A., Sucosky, P., Sucosky, P., & Yoganathan, A. (2009). Fluid mechanics of artificial heart valves. 
Clinical and Experimental Pharmacology & Physiology, 
36(2), 225-237. 
https://doi.org/10.1111/j.1440-1681.2008.05099.x.
                                                                                                                 Fang, Y. J., Zhang, M., Sun, X. P., Zhang, J. F., & Qu, Y. F. (2021). Study on internal flow characteristics of non-newtonian fluids in mechanical stirred tank. 
Journal of Mechanical Engineering, 
57(20), 244-253. 
https://doi.org/10.3901/jme.2021.20.244.
                                                                                                                 Fraser, K. H., Zhang, T., Taskin, M. E., Griffith, B. P., & Wu, Z. J. (2012). A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. 
Journal of Biomechanical Engineering, 
134(8), 081002. 
https://doi.org/10.1115/1.4007092.
                                                                                                                 Garg, P., Markl, M., Sathananthan, J., Sellers, S. L., Meduri, C.,& Cavalcante, J. (2023). Restoration of flow in the aorta: a novel therapeutic target in aortic valve intervention. 
Nature Reviews Cardiology, 
21(4), 264-273. 
https://doi.org/10.1038/s41569-023-00943-6.
                                                                                                                 Ge, L., Leo, H., Sotiropoulos, F., & Yoganathan, A. P. (2005). Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. 
Journal of Biomechanical Engineering, 
127(5), 782-797. 
https://doi.org/10.1115/1.1993665.
                                                                                                                 Grigioni, M., Daniele, C., D’Avenio, G., & Barbaro, V. (2001). The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves. 
Journal of Biomechanics, 
34(5), 613-621. 
https://doi.org/10.1016/S0021-9290(00)00240-2.
                                                                                                                 Gunning, P. S., Saikrishnan, N., McNamara, L. M., & Yoganathan, A. P. (2014). An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. 
Annals of Biomedical Engineering, 
42(6), 1195-1206. 
https://doi.org/10.1007/s10439-014-1008-6.
                                                                                                                 Haghighi A. R., & Asl, M. S. (2015). Mathematical modeling of micropolar fluid flow through an overlapping arterial stenosis
. International Journal of Biomathematics, 
04(08), 1550056. 
https://doi.org/10.1142/S1793524515500564.
                                                                                                                 Haghighi, A. R., Aliashrafi, N., & Asl, M. S. (2020). An implicit approach to the micropolar fluid model of blood flow under the effect of body acceleration. 
Mathematical Sciences, 
14(3), 269-277. 
https://doi.org/10.1007/s40096-020-00340-x.
                                                                                                                 Hatoum, H., Ahn, S., Lilly, S. M., Maureira, P., Crestanello, J. A., Thourani, V. H., & Dasi, L. P. (2022). Flow dynamics of surgical and transcatheter aortic valves: Past to present. 
JTCVS Open, 
9, 43-56. 
https://doi.org/10.1016/j.xjon.2022.01.017.
                                                                                                                 Horstkotte, D., Haerten, K. J., Herzer, J. A., Seipel, L ., Bircks, W., & Loogen, F. (1981). Preliminary clinical and hemodynamic results after mitral valve replacement using St. Jude Medical prostheses in comparison with the Björk-Shiley valve. 
The Thoracic and Cardiovascular Surgeon, 
29(2), 93-99. 
https://doi.org/10.1055/s-2007-1023451.
                                                                                                                                                                                                                                 Knoch, M., Reul, H., Kröger, R., & Rau, G. (1988). Model studies at mechanical aortic heart valve prostheses-Part I: Steady-state flow fields and pressure loss coefficients. 
Journal of Biomechanical Engineering, 
110(4), 334-343. 
https://doi.org/10.1115/1.3108450.
                                                                                                                 Leo, H. L., He, Z., Ellis, J. T., & Yoganathan, A. P. (2002). Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. 
Journal of Thoracic and Cardiovascular Surgery, 
124(3), 561-574. 
https://doi.org/10.1067/mtc.2002.125206.
                                                                                                                                                                                                                                 Linde, T., Hamilton, K. F., Navalon, E. C., Schmitz-Rode, T., & Steinseifer, U. (2012). Aortic root compliance influences hemolysis in mechanical heart valve prostheses: an in-vitro study. 
The International Journal of Artificial Organs, 
35(7), 495-502. 
https://doi.org/10.5301/ijao.5000108.
                                                                                                                 Liu, Z. M., Xue, H. B., Yang, G., Pang, Y., Fang, Y. C., Li, M. Q., Qi, Y. P., & Shi, Y. (2020). PIV experimental study on the hemodynamics of aortic valve under varied tilted angles. 
Chinese Journal of Theoretical and Applied Mechanics, 
52(6), 1811-1821. 
https://doi.org/10.6052/0459-1879-20-229.
                                                                                                                 Liu, Z. M., Yang, G., Pang, Y., Zhong, X. X., Li, M. Q., Xue, H. B., Qi, Y. P., & Shi, Y. (2019). Experimental study on hemodynamics of aortic valve under varied cardiac output using PIV. 
Chinese Journal of Theoretical and Applied Mechanics, 
51(6), 1918-1926. 
https://doi.org/10.6052/0459-1879-19-231.
                                                                                                                                                                                                                                 Pour, M. K., Nili-Ahmadabadi, M., Taherian, G., & Minaean, A. (2017). Experimental study of natural convective flow over a hot horizontal rhombus cylinder immersed in water via PIV technique. 
Journal of Applied Fluid Mechanics, 
10(2), 735-747. 
https://doi.org/10.18869/ACADPUB.JAFM.73.239.27300.
                                                                                                                 Qiang, Y., Duan, T. C., Zhang, M. Z., Qi, L., & Wei L. J. (2024). Experimental study of aortic BMHV flow characteristics under different physiological conditions using PIV. 
Chinese Journal of Theoretical and Applied Mechanics, 
56(6), 1807-1817. 
https://doi.org/10.6052/0459-1879-23-563.
                                                                                                                 Qiang, Y., Duan, T. C., Zhang, M. Z., Qi, L., Wei, L. J., & Wei, Z. Q. (2023a). Impact of bileaflet mechanical heart valve leaflet dysfunction on left ventricular blood flow: An experimental study. 
Physics of Fluids, 
35(9), 091909. 
https://doi.org/10.1063/5.0166451.
                                                                                                                 Qiang, Y., Zhang, Q., Qi, L., Duan, T. C., Zhang, M. Z., & Wei, L. J. (2023b). Research on the design and control method of cardiac pulsating flow analog drive motor. 
Micromotors, 
56(9), 26-32. 
https://doi.org/10.15934/j.cnki.micromotors.2023.09.009.
                                                                                                                                                                                                                                 Rajput, F. A., & Zeltser, R. (2023). Aortic Valve Replacement. StatPearls Publishing. PMID: 30725821.
                                                                                                                Selmi, M., Chiu, W. C., Chivukula, V. K., Melisurgo, G., Beckman, G. A., Mahr, C., Aliseda, A., Votta, E., Redaelli, A., Slepian, M. J., Bluestein, D., Pappalardo, F., & Consolo, F. (2019). Blood damage in Left Ventricular Assist Devices: Pump thrombosis or system thrombosis? 
The International Journal of Artificial Organs, 
42(3), 113-124. 
https://doi.org/10.1177/0391398818806162.
                                                                                                                 Thielicke, W., & Sonntag, R. (2021). Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab. 
Journal of Open Research Software, 
9(1), 12. 
https://doi.org/10.5334/JORS.334.
                                                                                                                 Weinberg, E. J., Mack, P. J., Schoen, F. J., García-Cardeña, G., & Kaazempur Mofrad, M. R. (2010). Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. 
Cardiovascular Engineering, 
10(1), 5-11. 
https://doi.org/10.1007/s10558-009-9089-9.
                                                                                                                 Xu, M. B., He, G., & Wen, J. (2022). Background interference removal algorithm for PIV preprocessing based on improved local otsu thresholding. 
Chinese Journal of Biomedical Engineering (English Edition), 
31(4), 147-159. 
https://doi.org/10.1007/978-3-031-51455-5_24.
                                                                                                                 Yang, Y., Wang, Z. W., Chen, Z., Wang, X., Zhang, L. F., Li, S. N., Zheng, C. Y., Kang, Y. T., Jiang, L. L., Zhu, Z. H., & Gao, R. L. (2021). Current status and etiology of valvular heart disease in China: a population-based survey, 
BMC Cardiovascular Disorders, 
21(1), 1-9. 
https://doi.org/10.1186/s12872-021-02154-8.