Fluent Inc. Fluent User’s Guide. Fluent Inc. (2006).
Hall, I. M. (1962). Transonic flow in two-dimensional and axially-symmetric nozzles.
The Quarterly Journal of Mechanics and Applied Mathematics, 15(4), 487-508.
https://doi.org/10.1093/qjmam/15.4.487
Ishibashi, M. (1999). Discharge coefficient of critical nozzles machined by super-accurate lathes. Bulletin of NRLM, 48, 61. ID 10007557560
Ishibashi, M. (2015). Discharge coefficient equation for critical-flow toroidal-throat venturi nozzles covering the boundary-layer transition regime.
Flow Measurement and Instrumentation, 44, 107-121.
https://doi.org/10.1016/j.flowmeasinst.2014.11.009
Ishibashi, M. (2018). Effect of a cylindrical throat occasionally produced in a CFVN designed to have a toroidal throat. National Metrology Institute of Japan, 10th ISFFM Querétaro, Mexico.
Kassem, F. A., Shaalan, M. R., Hegazy, R. S., & Ibrahim, S. A (2023). Effect of back pressure and divergence angle on location of normal shock wave.
Journal of Measurement Science & Applications, 3, 15-31.
https://doi.org/10.21608/jmsa.2023.318495
Kliegel, J. R., & Levine, J. N. (1969). Transonic flow in small throat radius of curvature nozzles.
AIAA Journal, 7(7), 1375-1378.
https://doi.org/10.2514/3.5355
Mason, M. L. (1980). The effect of throat contouring on two-dimensional converging-diverging nozzles at static conditions. National Aeronautics and Space Administration, Scientific and Technical Information Branch.
Park, K. A., Choi, Y. M., Choi, H. M., Cha, T. S., & Yoon, B. H. (2001). The evaluation of critical pressure ratios of sonic nozzles at low Reynolds numbers.
Flow measurement and Instrumentation, 12(1), 37-41.
https://doi.org/10.1016/S0955-5986(00)00040-6
Shaalan, M., Kassem, F., & Hagazy, R. (2018). Calibration Nozzle Performance-State of The Art.
The Egyptian International Journal of Engineering Sciences and Technology, 26(EIJEST, Vol. 26, 2018), 1-13.
https://doi.org/10.21608/eijest.2018.97251
Spotts, N. G., Guzik, S., & Gao, X. (2013).
A CFD analysis of compressible flow through convergent-conical nozzles. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3734).
https://doi.org/10.2514/6.2013-3734
Stratford, B. S. (1964). The calculation of the discharge coefficient of profiled choked nozzles and the optimum profile for absolute air flow measurement.
The Aeronautical Journal, 68(640), 237-245.
https://doi.org/10.1017/S0001924000060905
Tang, S. P., Purdue Univ Lafayette Ind Project Squid Headquarters. (1969).
Theoretical determination of the discharge coefficients of axisymmetric nozzles under critical flows (p. 0042). Project SQUID Technical Report.
https://ui.adsabs.harvard.edu/abs/1979rgd..conf..229T
Wang, C., Cao, P., Li, C., Ding, H., & Cui, L. (2019). Influence of wall roughness on boundary layer transition position of the sonic nozzles.
Measurement, 139, 196-204.
https://doi.org/10.1016/j.measurement.2019.01.091
Weiss, S., Mickan, B., Polansky, J., Oberleithner, K., Bär, M., & Schmelter, S. (2024). Improved prediction of the flow in cylindrical critical flow venturi nozzles using a transitional model.
Flow,
Turbulence and Combustion, 1-27.
https://doi.org/10.1007/s10494-024-00553-3.