Asadi, S., Bouvier, N., Wexler, A. S., & Ristenpart, W. D. (2020). The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?
Aerosol Science and Technology, 54, 635–635.
https://doi.org/10.1080/02786826.2020.1749229
Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.Y., Chen, L., & Wang, M. (2020). Presumed asymptomatic carrier transmission of COVID-19.
JAMA,
323 (14), 406-392.
https://doi.org/10.1001/jama.2020.2565
Bhardwaj, R., & Agrawal, A. (2020). Likelihood of survival of coronavirus in a respiratory droplet deposited on a solid surface.
Physics of Fluids,
32(6).
https://doi.org/10.1063/5.0012009
Bourouiba, L. (2020). Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19.
JAMA,
323, 1837–1837.
https://doi.org/10.1001/jama.2020.4756
Duan, W., Mei, D., Li, J., Liu, Z., Ja, M., & Hou, S. (2021). Spatial Distribution of Exhalation Droplets in the Bus in Different Seasons.
Aerosol and Air Quality Research,
21, (8) 1-19.
https://doi.org/10.4209/aaqr.200478
Feng, Y., Marchal, T., Sperry, T., & Yi, H. (2020). Influence of wind and relative humidity on the social distancing effectiveness to prevent COVID-19 airborne transmission: A numerical study.
Journal of Aerosol Science,
147, 105585–105585.
https://doi.org/10.1016/j.jaerosci.2020.105585
Gorbunov, B. (2021). Aerosol particles generated by coughing and sneezing of a SARS-CoV-2 (COVID-19) host travel over 30 m distance.
Aerosol and Air Quality Research,
21(3), 1-16.
https://doi.org/10.4209/aaqr.200468
Gralton, J., Tovey, E., Mclaws, M. L., & Rawlinson, W. D. (2011). The role of particle size in aerosolized pathogen transmission: a review.
Journal of Infection.
62, 1, 1–13.
https://doi.org/10.1016/j.jinf.2010.11.010
Han, Z. Y., Weng, W. G., & Huang, Q. Y. (2013). Characterizations of particle size distribution of the droplets exhaled by sneeze.
Journal of The Royal Society Interface, 10(88), 20130560 1–11.
https://doi.org/10.1098/rsif.2013.0560
Jayaweera, M., Perera, H., Gunawardana, B., & Manatunge, J. (2020). Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy.
Environmental Research,
188, 109819– 109819.
https://doi.org/10.1016/j.envres.2020.109819
Li, Y. Y., Wang, J. X., & Chen, X. (2020). Can a toilet promote virus transmission? from a fluid dynamics perspective.
Physics of Fluids,
32(6), 65107–65107.
https://doi.org/10.1063/5.0013318
Mahdi, A., Emad, F., & Mehrzad, S. (2021). Investigating the effect of air conditioning on the distribution and transmission of COVID-19 virus particles.
Journal of Cleaner Production,
316, 128147, 1–23.
https://doi.org/10.1016/j.jclepro.2021.128147
Mirzaie, M., Lakzian, E., Khan, A., Warkiani, M. E., Mahian, O., & Ahmadi, G. (2021). COVID-19 spread in a classroom equipped with partition- A CFD approach.
Journal of Hazardous Materials,
420, 126587, 1–18.
https://doi.org/10.1016/j.jhazmat.2021.126587
Pendar, M. R., & Páscoa, J. (2020) Numerical modeling of the distribution of virus carrying saliva droplets during sneeze and cough.
Physics of Fluids,
32(8), 83305, 1–18.
https://doi.org/10.1063/5.0018432
Perić, R., & Perić, M. (2020). Analytical and numerical investigation of the airflow in face masks used for protection against COVID-19 virus –implications for mask design and usage.
Journal of Applied Fluid Mechanics,
13(6), 1911–1923.
https://doi.org/10.47176/jafm.13.06.31812
Richard, M., Brand, J. M. V. D., Bestebroer, T. M., Lexmond, P., Meulder, D. D., Fouchier, R. A., Lowen, A. C., & Herfst, S. (2020). Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets.
Nature Communications,
11(1), 1–11.
https://doi.org/10.1038/s41467-020-14626-0
Ritos, K., Drikakis, D., & Kokkinakis I. W. (2024). The effects of ventilation conditions on mitigating airborne virus transmission. Physics of Fluids, 36(1), 1-13. https://doi.org/10.1063/5.0185296
Tsan-Hsing, S., William, W., Aamir, S., Zhigang, Y., & Jiang, Z. (1995). A new k-ε eddy viscosity model for high Reynolds number turbulent flows.
Computers & Fluids,
24(3), 227–238.
https://doi.org/10.1016/0045-7930(94)00032-T
Wan, M. P., & Chao, C. Y. H. (2006). Transport characteristics of expiratory droplet sand droplet nuclei in indoor environments with different ventilation airflow patterns.
Journal of Biomechanical Engineering,
129(3), 341–353.
https://doi.org/10.1115/1.2720911
Wan, M. P., Chao, C. Y. H., Ng, Y. D., To, G. N. S., & Yu, C. W. (2007). Dispersion of expiratory droplets in a general hospital ward with ceiling mixing type mechanical ventilation system.
Aerosol Science and Technology,
41(3), 244–258.
https://doi.org/10.1080/02786820601146985
Wenzhu, D., Dan, M., Jiaqian, L., Zihan, L., Mengfan, J., & Shanshan H. (2021). Spatial distribution of exhalation droplets in the bus in different seasons. Aerosol and Air Quality Research, 21 (8),200478, 1–19. https://doi.org/10.4209/aaqr.200478
Yan, J., Grantham, M., Pantelic, J., Mesquita, P. J. B. D., Albert, B., Liu, F., Ehrman, S., Milton, D.K., and Consortium (2018). Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community.
Proceedings of the National Academy of Sciences,
115(5), 1081–1086.
https://doi.org/10.1073/pnas.1716561115
Zhu, S., Kato, S., & Yang, H, J. (2006). Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment.
Building and Environment,
41(12), 1691–1702.
https://doi.org/10.1016/j.buildenv.2005.06.024