MHD Free Convection in an Enclosure Loaded with Nanofluid and Partially Cross-heated

Document Type : Regular Article

Authors

1 LS3M Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University, 25000 Khouribga, Morocco

2 Cadi Ayyad University, Faculty of Sciences Semlalia, Department of Physics, LMFE, BP 2390 Marrakesh, Morocco

10.47176/jafm.18.7.3168

Abstract

This paper digitally examines natural convection in a porous cavity laden with nanofluids. The influence of Brownian motion and thermophoresis on particle motion through the Buongiorno model is reviewed. The application of the Darcy-Brinkman model makes it possible to simulate the transfer of momentum under the effect of a horizontal magnetic field. Two segments located in the central parts of the left and bottom walls heat the cavity. The right wall is cooled at a constant temperature and the remaining surfaces of the cavity boundary are insulated. A computational code, designed on the principles of the finite volume method in conjunction with the SIMPLE algorithm, is employed to address the fundamental equations governing the system effectively. The numerical results are illustrated by presenting streamlines, isotherms, iso-concentrations and local and mean Nusselt numbers. The dimensionless parameters that change are the Rayleigh number 103 ≤ RT ≤ 106, the Darcy number 10-5 ≤ Da ≤ 10-2 the Hartmann number 0 ≤ Ha ≤ 100, the thermophoresis parameter 0.05 ≤ Nt ≤ 0.5 the Brownian motion parameter 0.05 ≤ Nb ≤ 0.5, and the buoyancy parameter 0.05 ≤ Nr ≤ 0.5. The increase in RT leads to an improvement in the heat transfer rate and an attenuation of the inhomogeneity of the distribution of nanoparticles in the cavity. A reverse tendency is observed by increasing the intensity of the magnetic field. Moreover, the parameters  and  exhibit a more significant impact on the Sherwood number than on the Nusselt number.

Keywords

Main Subjects


Ahmed, S. E., Mansour, M. A., Rashad, A. M., & Salah, T. (2020). MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids. Journal of Thermal Analysis and Calorimetry139(5), 3133-3149.  https://doi.org/10.1007/s10973-019-08675-x
Alsabery, A. I., Saleh, H., Hashim, I., & Hussain, S. H. (2016). Darcian natural convection in inclined square cavity partially filled between the central square hole filled with a fluid and inside a square porous cavity filled with nanofluid. Journal of Applied Fluid Mechanics, 9(4), 1763-1775. https://doi.org/10.18869/acadpub.jafm.68.235.24575
Alsabery, A. I., Sheremet, M. A., & Chamkha, A. J. (2018). Conjugate natural convection of Al2O3–water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. International Journal of Mechanical Sciences, 136, 200-219. https://doi.org/10.1016/j.ijmecsci.2017.12.025
Babar, H., & Ali, H. M. (2019). Airfoil shaped pin-fin heat sink: potential evaluation of ferric oxide and titania nanofluids. Energy Conversion and Management202, 112194. https://doi.org/10.1016/j.enconman.2019.112194
Benygzer, C., Bouzit, M., Mokhefi, A., & Khelif. F. (2022). Unsteady natural convection in a porous square cavity saturated by nanofluid using buongiorno model: variable permeability effect on homogeneous porous medium. CFD Letters, 14(7), 42-61. https://doi.org/10.37934/cfdl.14.7.4261
Bondareva, N. S., Sheremet, M. A., Oztop, H. F., & Abu-Hamdeh, N. (2017). Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Advanced Powder Technology28, 244-255. https://doi.org/10.1016/j.apt.2016.09.030
Bondareva, N. S., Sheremet, M. A., Oztop, H. F., & Abu-Hamdeh, N. (2016). Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater. International Journal of Heat and Mass Transfer; 99, 872-881. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.055
Buongiorno, J. (2006). Convective transport in nanofluids. ASME Journal of Heat Transfer, 128(3), 240–250. https://doi.org/10.1115/1.2150834
Calcagni B., Marsili F., & Paroncini M. (2005). Natural convective heat transfer in square enclosures heated from below. Applied Thermal Engineering, 25, 2522–2531. https://doi.org/10.1016/j.applthermaleng.2004.11.032
Choi, S. U. S., & Eastman, J. A. (1995, November 12-17). Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition, San Francisco, United States: N. p., 1995.
Jafari, Y., Taeibi-Rahni, M., Haghshenas, M., & Ramian, P. (2018). Lattice boltzmann numerical investigation of inner cylindrical pin-fins configuration on nanofluid natural convective heat transfer in porous enclosure. Journal of Applied Fluid Mechanics, 11 (3), 801-816. https://doi.org/10.29252/jafm.11.03.27945
Kahveci, K. (2010). Buoyancy driven heat transfer of nanofluids in a tilted enclosure. Journal of Heat Transfer; 132(6) 062501. (12 pages). https://doi.org/10.1115/1.4000744
Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A. J., Wongwises, S., & Pop, I. (2017). Nanofluid flow and heat transfer in porous media: a review of the latest developments. International Journal of Heat and Mass Transfer107, 778-791. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074
Kefayati, G. R. (2014). Effect of a magnetic field on natural convection in a nanofluid-filled enclosure with a linearly heated wall using LBM. Arabian Journal for Science an Engineering, 39, 4151–4163. https://doi.org/10.1007/s13369-014-1031-9
Khanafer, K., & Vafai, K. (2019). Applications of nanofluids in porous medium. Journal of Thermal Analysis and Calorimetry, 135, 1479–1492. https://doi.org/10.1007/s10973-018-7565-4
Li, S., Abbasi, A., Farooq, W., Gul, M., Khan, M.I., Nafasova, G., & Hejazi, H. A., (2024a). Heat and mass transfer characteristics of Al2O3/H2O and (Al2O3+Ag)/H2O nanofluids adjacent to a solid sphere: A theoretical study. Numer. Heat trans. Part A: applications. 1-19. https://doi.org/10.1080/10407782.2024.2306177
Li, S., Khan, M.I., Ali, S., Ullah Khan, S., Althobaiti, S.A., Khan, I., & Kchaou, M., (2024b). Influence of variable fluid properties on mixed convective Darcy–Forchheimer flow relation over a surface with Soret and Dufour spectacle. Open Physics 22(1) 20240010. https://doi.org/10.1515/phys-2024-0010
McNab, G. S., & Meisen, A. (1973). Thermophoresis in liquids. Journal of Colloid and Interface Science, 44 (2), 339-346. https://doi.org/10.1016/0021-9797(73)90225-7.
Motlagh, S. Y., Taghizadeh, S., & Soltanipour, H. (2016). Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model. Advanced Powder Technology, 27(6), 2526–2540. https://doi.org/10.1016/j.apt.2016.09.016
Narla, V. K., Tripathi, D., & Bég, O. A. (2020). Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation. Thermal Science and Engineering Progress, 15. https://doi.org/10.1016/j.tsep.2019.100424.
Nazari, M. A., Ghasempour, R., & Ahmadi, M. H. (2019). A review on using nanofluids in heat pipes. Journal of Thermal Analysis and Calorimetry, 137, 1847–1855. https://doi.org/10.1007/s10973-019-08094-y
Oztop, H. F., & Abu-Nada, E. (2008). Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(5), 1326–1336. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. Taylor and Francis Group, New York, 113-137.
Prakash, J., Sharma, A. & Tripathi, D. (2020). Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics. Pramana – Journal of Physics, 94(4). https://doi.org/10.1007/s12043-019-1873-5
Prakash, J., Siva, E. P., Tripathi, D., & Bég, O. A. (2019a). Thermal slip and radiative heat transfer effects on electro-osmotic magneto nanoliquid peristaltic propulsion through a microchannel. Heat Transfer Asian Research, 48(7), 2882–2908. https://doi.org/10.1002/htj.21522
Prakash, J., Siva, E. P., Tripathi, D., Kuharat, S., & Bég, O. A. (2019b). Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto biomimetic nanopump. Renewable Energy, 133, 1308–13026. https://doi.org/10.1016/j.renene.2018.08.096
Rahimi, A., Dehghan Saee, A., Kasaeipoor, A., & Hasani Malekshah, E. (2019). A comprehensive review on natural convection flow and heat transfer: the most practical geometries for engineering applications. International Journal of Numerical Methods for Heat & Fluid Flow29(3), 834-877. https://doi.org/10.1108/HFF-06-2018-0272
Sajid, M. U., Ali, H. M., Sufyan, A., Rashid, D., Zahid, S. U., & Rehman, W. U. (2019). Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. Journal of Thermal Analysis and Calorimetry137(4), 1279-1294. https://doi.org/10.1007/s10973-019-08043-9
Sammoud, M., & Gueraoui, K. (2021). MHD double diffusive convection of al2o3-water nanofluid in a porous medium filled an annular space inside two vertical concentric cylinders with discrete heat flux. Journal of Applied Fluid Mechanics, 14(5), 1459-1468. https://doi.org/10.47176/jafm.14.05.32388
Sheikholeslami, M. (2018a). Magnetic source impact on nanofluid heat transfer using CVFEM. Neural Computing and Applications, 30, 1055–1064. https://doi.org/10.1007/s00521-016-2740-7
Sheikholeslami, M. (2018b). New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput. Methods in Applied Mechanics and Engineering,344, 319–333. https://doi.org/10.1016/j.cma.2018.09.044
Sheikholeslami, M. (2019). Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method, Comput. Computer Methods in Applied Mechanics and Engineering 344, 306–318. https://doi.org/10.1016/j.cma.2018.09.042
Sheikholeslami, M., & Shehzad, S. A. (2017). RETRACTED: Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. International Journal of Heat and Mass Transfer, 113, 796-805. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.130

Sheikholeslami, M., & Ellahi R. (2015). Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. International Journal of Heat and Mass Transfer, 89, 799-808. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.110

Sheremet, M. A., Groşan, T., & Pop, I. (2014). Free convection in shallow and slender porous cavities filled by a nanofluid using buongiorno's model. ASME. Journal of Heat Transfer, 136(8), 082501. https://doi.org/10.1115/1.4027355
Sheremet, M. A., Grosan, T., & Pop, I. (2015). Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model. European Journal of Mechanics - B/Fluids, (53), 241-250. https://doi.org/10.1016/j.euromechflu.2015.06.003
Zahmatkesh, I., & Habibi, M. R. (2019). Natural and mixed convection of a nanofluid in porous cavities: critical analysis using buongiorno’s model. Journal of Theoretical and Applied Mechanics, 57(1), 221-233. https://doi.org/10.15632/jtam-pl.57.1.221