Ahmed, S. E., Mansour, M. A., Rashad, A. M., & Salah, T. (2020). MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids.
Journal of Thermal Analysis and Calorimetry,
139(5), 3133-3149.
https://doi.org/10.1007/s10973-019-08675-x
Alsabery, A. I., Saleh, H., Hashim, I., & Hussain, S. H. (2016). Darcian natural convection in inclined square cavity partially filled between the central square hole filled with a fluid and inside a square porous cavity filled with nanofluid.
Journal of Applied Fluid Mechanics,
9(4), 1763-1775.
https://doi.org/10.18869/acadpub.jafm.68.235.24575
Alsabery, A. I., Sheremet, M. A., & Chamkha, A. J. (2018). Conjugate natural convection of Al2O3–water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model.
International Journal of Mechanical Sciences,
136, 200-219.
https://doi.org/10.1016/j.ijmecsci.2017.12.025
Benygzer, C., Bouzit, M., Mokhefi, A., & Khelif. F. (2022). Unsteady natural convection in a porous square cavity saturated by nanofluid using buongiorno model: variable permeability effect on homogeneous porous medium.
CFD Letters,
14(7), 42-61.
https://doi.org/10.37934/cfdl.14.7.4261
Bondareva, N. S., Sheremet, M. A., Oztop, H. F., & Abu-Hamdeh, N. (2017). Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity.
Advanced Powder Technology,
28, 244-255.
https://doi.org/10.1016/j.apt.2016.09.030
Bondareva, N. S., Sheremet, M. A., Oztop, H. F., & Abu-Hamdeh, N. (2016). Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater.
International Journal of Heat and Mass Transfer; 99, 872-881.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.055
Choi, S. U. S., & Eastman, J. A. (1995, November 12-17). Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition, San Francisco, United States: N. p., 1995.
Jafari, Y., Taeibi-Rahni, M., Haghshenas, M., & Ramian, P. (2018). Lattice boltzmann numerical investigation of inner cylindrical pin-fins configuration on nanofluid natural convective heat transfer in porous enclosure.
Journal of Applied Fluid Mechanics,
11 (3), 801-816.
https://doi.org/10.29252/jafm.11.03.27945
Kahveci, K. (2010). Buoyancy driven heat transfer of nanofluids in a tilted enclosure.
Journal of Heat Transfer;
132(6) 062501. (12 pages).
https://doi.org/10.1115/1.4000744
Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A. J., Wongwises, S., & Pop, I. (2017). Nanofluid flow and heat transfer in porous media: a review of the latest developments.
International Journal of Heat and Mass Transfer,
107, 778-791.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074
Kefayati, G. R. (2014). Effect of a magnetic field on natural convection in a nanofluid-filled enclosure with a linearly heated wall using LBM.
Arabian Journal for Science an Engineering,
39, 4151–4163.
https://doi.org/10.1007/s13369-014-1031-9
Li, S., Abbasi, A., Farooq, W., Gul, M., Khan, M.I., Nafasova, G., & Hejazi, H. A., (2024a). Heat and mass transfer characteristics of Al2O3/H2O and (Al2O3+Ag)/H2O nanofluids adjacent to a solid sphere: A theoretical study.
Numer. Heat trans. Part A: applications. 1-19.
https://doi.org/10.1080/10407782.2024.2306177
Li, S., Khan, M.I., Ali, S., Ullah Khan, S., Althobaiti, S.A., Khan, I., & Kchaou, M., (2024b). Influence of variable fluid properties on mixed convective Darcy–Forchheimer flow relation over a surface with Soret and Dufour spectacle.
Open Physics 22(1) 20240010.
https://doi.org/10.1515/phys-2024-0010
Motlagh, S. Y., Taghizadeh, S., & Soltanipour, H. (2016). Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model.
Advanced Powder Technology,
27(6), 2526–2540.
https://doi.org/10.1016/j.apt.2016.09.016
Narla, V. K., Tripathi, D., & Bég, O. A. (2020). Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation.
Thermal Science and Engineering Progress,
15.
https://doi.org/10.1016/j.tsep.2019.100424.
Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation. Taylor and Francis Group, New York, 113-137.
Prakash, J., Sharma, A. & Tripathi, D. (2020). Convective heat transfer and double diffusive convection in ionic nanofluids flow driven by peristalsis and electromagnetohydrodynamics.
Pramana – Journal of Physics,
94(4).
https://doi.org/10.1007/s12043-019-1873-5
Prakash, J., Siva, E. P., Tripathi, D., & Bég, O. A. (2019a). Thermal slip and radiative heat transfer effects on electro-osmotic magneto nanoliquid peristaltic propulsion through a microchannel.
Heat Transfer Asian Research,
48(7), 2882–2908.
https://doi.org/10.1002/htj.21522
Prakash, J., Siva, E. P., Tripathi, D., Kuharat, S., & Bég, O. A. (2019b). Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto biomimetic nanopump.
Renewable Energy,
133, 1308–13026.
https://doi.org/10.1016/j.renene.2018.08.096
Rahimi, A., Dehghan Saee, A., Kasaeipoor, A., & Hasani Malekshah, E. (2019). A comprehensive review on natural convection flow and heat transfer: the most practical geometries for engineering applications.
International Journal of Numerical Methods for Heat & Fluid Flow,
29(3), 834-877.
https://doi.org/10.1108/HFF-06-2018-0272
Sajid, M. U., Ali, H. M., Sufyan, A., Rashid, D., Zahid, S. U., & Rehman, W. U. (2019). Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks.
Journal of Thermal Analysis and Calorimetry,
137(4), 1279-1294.
https://doi.org/10.1007/s10973-019-08043-9
Sammoud, M., & Gueraoui, K. (2021). MHD double diffusive convection of al2o3-water nanofluid in a porous medium filled an annular space inside two vertical concentric cylinders with discrete heat flux.
Journal of Applied Fluid Mechanics,
14(5), 1459-1468.
https://doi.org/10.47176/jafm.14.05.32388
Sheikholeslami, M. (2018b). New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media, Comput.
Methods in Applied Mechanics and Engineering,344, 319–333.
https://doi.org/10.1016/j.cma.2018.09.044
Sheikholeslami, M. (2019). Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method, Comput.
Computer Methods in Applied Mechanics and Engineering 344, 306–318.
https://doi.org/10.1016/j.cma.2018.09.042
Sheremet, M. A., Groşan, T., & Pop, I. (2014). Free convection in shallow and slender porous cavities filled by a nanofluid using buongiorno's model.
ASME.
Journal of Heat Transfer,
136(8), 082501.
https://doi.org/10.1115/1.4027355
Sheremet, M. A., Grosan, T., & Pop, I. (2015). Steady-state free convection in right-angle porous trapezoidal cavity filled by a nanofluid: Buongiorno’s mathematical model.
European Journal of Mechanics - B/Fluids, (53), 241-250.
https://doi.org/10.1016/j.euromechflu.2015.06.003
Zahmatkesh, I., & Habibi, M. R. (2019). Natural and mixed convection of a nanofluid in porous cavities: critical analysis using buongiorno’s model.
Journal of Theoretical and Applied Mechanics,
57(1), 221-233.
https://doi.org/10.15632/jtam-pl.57.1.221