CFD Simulation and Robust Design Optimization of the Valve Seat and Orifice Plate in Port Fuel Injector

Document Type : Regular Article

Authors

1 Mechanical Engineering Simulation and Design Group, The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North Bangkok. 1518 Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand

2 Robert Bosch Automotive Technologies (Thailand) Co., Ltd. 7/102 Moo 4, Pluakdaeng, Rayong 21140, Thailand

10.47176/jafm.18.7.3109

Abstract

The mass flow rate of the fuel-air mixture can vary due to the geometry and dimensions of the valve seat and orifice plate at the tip of the port fuel injector. This study aims to reduce the standard deviation of the mass flow rate by optimizing four design parameters of the valve seat defined at the top (CHA1 – the angle between the valve seat and the bore wall and CHH1– its horizontal distance) and the bottom (CHA2 – the angle of the chamfer from the bottom of the valve seat and CHV2 – its vertical distance) of the edge breaks to guarantee a constant mass flow rate during its operation. The sensitivity analysis is implemented with the CFD simulation to generate the Design of Experiment (DOE) using ANSYS CFX and optiSLang. This created the correlation between design parameters and the averaged mass flow rate. The results indicate that CHA2 was the most impacting parameter on the mass flow rate. The Robust Design Optimization (RDO) is performed based on the Metamodel of Optimal Prognosis (MOP). Furthermore, the optimization loop processes the correlation function obtained from MOP using the Evolutionary Algorithms (EA) optimization method by keeping the standard deviation and the tolerance of the design parameters constant. In conclusion, the implemented EA optimization can reduce the standard deviation of the mass flow rate by approximate 51% and the new nominal designs at the valve seat edge breaks are obtained.

Keywords

Main Subjects


Alam, A., Mittal, M., & Lakshminarasimhan, V. (2020). Analysis of in-cylinder flow and cycle-to-cycle flow variations in a small spark-ignition engine at different throttle openings. SAE Technical Paper. https://doi.org/10.4271/2020-01-0793
Anekwanna, C., & Juntasaro, E.  (2018, December 11-14). Model assessment of a single plume spray injector in dynamic PFI engine simulation. The 9th TSME International Conference on Mechanical Engineering. TSME ICoME, Phuket, Thailand.
Ansys optiSLang. (2022). Methods for Multi-Disciplinary Optimization and Robustness Analysis. ANSYS Inc.
Antony, J. (2023). Design of experiments for engineers and scientists. Elsevier.
Bäck, T., & Schwefel, H. P. (1993). An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation, 1(1), 1-23. https://doi.org/10.1162/evco.1993.1.1.1
Baratta, M., Misul, D., & Xu, J.  (2021). Development and application of a method for characterizing mixture formation in a port-injection natural gas engine. Energy Conversion and Management, 227, 113595. https://doi.org/10.1016/j.enconman.2020.113595
Bellis, D. V., Piras, M., Bozza, F., Malfi, E., Novella, R., Gomez-Soriano, J., & Olcina-Girona, M. (2024). Development and validation of a phenomenological model for hydrogen fueled PFI internal combustion engines considering Thermo-Diffusive effects on flame speed propagation. Energy Conversion and Management, 308, 118395. https://doi.org/10.1016/j.enconman.2024.118395
Bhaduri, S., & Mallikarjuna, J. M. (2023). Comparison of Performance and Emission Characteristics of a Gasoline Engine with Laser and Spark Ignitions in Partially Stratified Mode—A Computational Fluid Dynamics Analysis. SAE International Journal of Engines, 16(3), 377-398. https://www.jstor.org/stable/27349141
Biçer, B., & Yurtkuran, A. (2020). Parameter and design analysis for gasoline direct injection injector using CFD and design of experiments. Journal of Applied Fluid Mechanics, 13(1), 119-132. https://doi.org/10.29252/jafm.13.01.29896
Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., Torczon, V., & Trosset, M. W. (1999). A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization, 17, 1-13. https://doi.org/10.1007/BF01197708
Bora, B. J., Dai, T. T., Shadangi, K. P., Sharma, P., Said Z., Kalita, P., Buradi, A., N, H., Pham, M. T., & Le, C. T. (2022). Improving combustion and emission characteristics of a biogas/biodiesel-powered dual-fuel diesel engine through trade-off analysis of operation parameters using response surface methodology. Sustainable Energy Technologies and Assessments, 53, 102455. https://doi.org/10.1016/j.seta.2022.102455
Bredberg, J. (2001). On two-equation eddy-viscosity models. Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Göteborg, Sweden.
Cecere, G., Irimescu, A., & Merola, S. (2023). Design of an Optically Accessible Intake Manifold for Characterization of Liquid and Gaseous Jets in PFI Operating Conditions. Design, 7(1), 24. https://doi.org/10.3390/designs7010024
Clerc, S. (2000). Numerical simulation of the homogeneous equilibrium model for two-phase flows. Journal of Computational Physics, 161(1), 354-375. https://doi.org/10.1006/jcph.2000.6515
Czitrom, V. (1999). One-factor-at-a-time versus designed experiments. The American Statistician, 53(2), 126-131. https://doi.org/10.1080/00031305.1999.10474445
Forte, C., Bianchi, G. M., & Corti, E. (2012). Multicycle simulation of the mixture formation process of a PFI gasoline engine. SAE Technical Paper. https://doi.org/10.4271/2011-01-2463
Gammaidoni, T., Miliozzi, A., Zembi, J., & Battistoni, M. (2024). Hydrogen mixing and combustion in an SI internal combustion engine: CFD evaluation of premixed and DI strategies. Case Studies in Thermal Engineering, 55, 104072. https://doi.org/10.1016/j.csite.2024.104072
Ghasemi, A., Shams, M., & Heyhat, M. M. (2017). A numerical scheme for optimizing gas liquid cylindrical cyclone separator. Journal of Process Mechanical Engineering, 231(4), 836-848. https://doi.org/10.1177/0954408916644002
Giancarlo, A. (2009). Reynolds-averaged Navier--Stokes equations for turbulence modeling. Applied Mechanics Reviews, 62(4). https://doi.org/10.1115/1.3124648
Golzari, R., Li, Y., & Zhao, H. (2016). Impact of port fuel injection and in-cylinder fuel injection strategies on gasoline engine emissions and fuel economy. SAE Technical Paper. https://doi.org/10.4271/2016-01-2174
Hellmann, R., Jochmann, P., Leick, P., Stapf, K. G., Schünemann, E., & Thévenin, D. (2018). Multi-Objective optimization of high-pressure gasoline injector nozzles using Genetic Algorithm coupled with Computational Fluid Dynamics (CFD): exploiting the manufactural design space. 14th ICLASS.
Hellmann, R., Jochmann, P., Stapf, K. G., Schuenemann, E., Daróczy, L., & Thévenin, D. (2017). Towards design optimization of high-pressure gasoline injectors using Genetic Algorithm coupled with Computational Fluid Dynamics (CFD). Ilass Europe. 28th European conference on Liquid Atomization and Spray Systems (pp 880-887). Editorial Universitat Politècnica de València. http://doi.org/10.4995/ILASS2017.2017.4586
Hinckel, J. N., Nova, H. V., & Bazarov, V. G. (2008). CFD analysis of swirl atomizers. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
Kalghatgi, G. T. (2015). Developments in internal combustion engines and implications for combustion science and future transport fuels. Proceedings of the Combustion Institute, 35(1), 101-115. https://doi.org/10.1016/j.proci.2014.10.002
Maio, G., Boberic, A., Giarracca, L., Aubagnac-Karkar, D., Colin, O., Duffour, F., Deppenkemper, K., Virnich, L., & Pischinger, S. (2022). Experimental and numerical investigation of a direct injection spark ignition hydrogen engine for heavy-duty applications. International Journal of Hydrogen Energy, 47(67), 29069-29084. https://doi.org/10.1016/j.ijhydene.2022.06.184
Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Menter, F. R., Lechner, R., & Matyushenko, A. (2019). Best practice: generalized k-ω two-equation turbulence model in ANSYS CFD (GEKO). ANSYS Germany GmbH, 107, 108. https://www.ansys.com/content/dam/amp/2022/march/quick-request/Best-Practice-GEKO-Turbulence-Modeling-in-Ansys-CFD.pdf
Menter, F. R., Matyushenko, A., & Lechner, R. (2020). Development of a generalized k-ω two-equation turbulence model. New Results in Numerical and Experimental Fluid Mechanics XII: Contributions to the 21st STAB/DGLR Symposium (pp. 101-109). Darmstadt, Germany: Springer. https://doi.org/10.1007/978-3-030-25253-3_10
Mohammadi, B., & Pironneau, O. (1993). Analysis of the k-epsilon turbulence model.
Most, T., & Will, J. (2008). Metamodel of optimal prognosis-an automatic approach for variable reduction and optimal metamodel selection. Proc. Weimarer Optimierungs-und Stochastiktage, 5, 20-21. https://doi.org/10.13140/2.1.2194.4007
Most, T., & Will, J. (2010). Recent advances in Meta-model of Optimal Prognosis. Proceedings of the Weimar Optimization and Stochastic Days, 7(21), 10-22. https://doi.org/10.13140/2.1.3374.0488
Most, T., & Will, J. (2011). ensitivity analysis using the Metamodel of Optimal Prognosis. Weimar Optimization and Stochastic Days, 8. https://doi.org/10.48550/arXiv.2408.03590
Nouri-Borujerdi, A., & Kebriaee, A. (2012). Numerical simulation of laminar and turbulent two-phase flow in pressure-swirl atomizers. AIAA Journal, 50(10), 2091-2101. https://doi.org/10.2514/1.J051331
Pan, M., Shu, G., Wei, H., Zhu, T., Liang, Y., & Liu, C. (2014). Effects of EGR, compression ratio and boost pressure on cyclic variation of PFI gasoline engine at WOT operation. Applied Thermal Engineering, 64(1-2), 491-498. https://doi.org/10.1016/j.applthermaleng.2013.11.013
Ptchelintsev, A., Grewolls, G., Will, J., & Theman, M. (2010). Applying sensitivity analysis and robustness evaluation in virtual prototyping on product level using optislang. SIMULIA Customer Conference. Citeseer. https://library.dynardo.de/fileadmin/Material_Dynardo/bibliothek/RDO/SCC2010-nokia_final.pdf
Rashid, A. N. M. H. N., Hairuddin, A. A., Rezali, K. A. M., Masuri, S. U., Jaafar, J., & Fitriyana, D. F. (2024). Computational Fluid Dynamics (CFD) Validation and Investigation the Effect of Piston Bowl Geometries Performance on Port Fuel Injection-Homogeneous Charge Compression Ignition (PFI-HCCI) Engines. Journal of Advanced Research in Numerical Heat Transfer, 18(1), 30-48. https://doi.org/10.37934/arnht.18.1.3048
Raţiu, S. (2003). The history of the internal combustion engine. Annals of the Faculty of Engineering Hunedoara, 1, 145-148. https://annals.fih.upt.ro/pdf-full/2003/ANNALS-2003-3-21.pdf
Reitz, R. D. (2013). Directions in internal combustion engine research. Combustion and Flame , 160(1), 1-6. https://doi.org/10.1016/j.combustflame.2012.11.002
Relich, M. (2016). Computational intelligence for estimating cost of new product development. Foundations of Management, 8(1), 21-34. https://doi.org/10.1515/fman-2016-0002
Robert, B. (2022). Bosch automotive handbook. Willey.
Sagdeev, D. I., Fomina, M. G., Mukhamedzyanov, G. K., & Abdulagatov, I. M. (2013). Experimental study of the density and viscosity of-heptane at temperatures from 298 K to 470 K and pressure upto 245 MPa. International Journal of Thermophysics, 34(1), 1-33. https://doi.org/10.1007/s10765-012-1373-z
Sahoo, S., & Srivastava, D. K. (2023). Numerical analysis of performance, combustion, and emission characteristics of PFI gasoline, PFI CNG, and DI CNG engine. Energy, 278, 127749. https://doi.org/10.1016/j.energy.2023.127749
Salim, S. M., & Cheong, C. S. (2009). Wall Y strategy for dealing with wall-bounded turbulent flows. Proceedings of the International Multiconference of Engineers and Computer Scientists, 2, 2165-2170. https://www.iaeng.org/publication/IMECS2009/IMECS2009_pp2165-2170.pdf
Schmidt, D. P., Nouar, I., Senecal, P. K., Rutland, C., Martin, J., Reitz, R. D., & Hoffman, J. A. (1999). Pressure-swirl atomization in the near field. SAE Transactions, 471-484. http://www.jstor.org/stable/44743386
Serra, N. (2023). Revisiting RANS turbulence modelling used in built-environment CFD simulations. Building and Environment, 237, 110333. https://doi.org/10.1016/j.buildenv.2023.110333
Singh, I., Güdden, A., Raut, A., Dhongde, A., Emran, A., Sharma, V., & Wagh, S. (2024). Experimental and numerical investigation of a single-cylinder methanol port-fuel injected spark ignition engine for heavy-duty applications. SAE Technical Paper, 14. https://doi.org/10.4271/2024-26-0072
Smil, V. (2005). Creating the twentieth century: Technical innovations of 1867-1914 and their lasting impact. Oxford University Press. https://doi.org/10.1093/0195168747.001.0001
Vikhar, P. A. (2016). Evolutionary algorithms: A critical review and its future prospects. International Conference on Global Trends in Signal Processing, Information Computing and Communication (pp. 261-265). IEEE. https://doi.org/10.1109/ICGTSPICC.2016.7955308
Wang, X., Zhao, H., & Xie, H. (2016). Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine. Applied Energy, 165, 801-814. https://doi.org/10.1016/j.apenergy.2015.12.116
Wilcox, D. C. (2008). Formulation of the kw turbulence model revisited. AIAA Journal, 46(11), 2823-2838. https://doi.org/10.2514/1.36541
Yago, G. (1983). The sociology of transportation. Annual Review of Sociology, 9(1), 171-190. https://doi.org/10.1146/annurev.so.09.080183.001131
Yang, J., Kaiser, E. W., Siegl, W. O., & Anderson, R. W. (1993). Effects of port-injection timing and fuel droplet size on total and speciated exhaust hydrocarbon emissions. SAE Technical Paper. https://doi.org/10.4271/930711
Yusuf, S. N., Asako, Y., Sidik, N. A., Mohamed, S. B., & Japar, W. M. (2020). A short review on rans turbulence models. CFD Letters, 12(11), 83-96. https://doi.org/10.37934/cfdl.12.11.8396
Zoumpourlos, K., Coraddu, A., Geertsma, R., & Ketterij, R. V. D. (2023). Evaluation of methanol sprays in marine internal combustion engines: a case study for port fuel injection systems. Modelling and Optimisation of Ship Energy Systems. https://doi.org/10.59490/moses.2023.655