Analysis of Dual Bell Nozzle Configurations: Design Parameters and Performance Measurements

Document Type : Regular Article

Authors

1 Aeronautics and Space Studies Institute, Aeronautical Sciences Laboratory, University of Blida 1, Blida, Algeria

2 Higher School of Aeronautical Techniques,Dar El-Beida, Algiers, Algeria

10.47176/jafm.18.7.3239

Abstract

The auto-adaptation capability of the dual-bell nozzle (DBN) facilitates and enhances the performance of rocket propulsion systems, thus rendering it suitable for sea-level operations and efficient transitions at varying altitudes. This study compares the performances of three different types of DBNs in terms of thrust efficiency and altitude compensation. Additionally, a set of simulations is performed to investigate the key design parameters, such as the nozzle geometry, expansion ratio, and contour shapes, to evaluate their effect on the overall performance. After performing an extended literature review of dual-bell propulsion nozzles, the abovementioned parameters are examined systematically to provide deeper insights into their effects on thrust generation and altitude adaptability. The results show that thrust-optimised parabolic base nozzle designs can significantly enhance the thrust efficiency in aeroengines and facilitate adaptation to a wide range of altitudes. This study provides critical insights into the essential design aspects for optimising the performance of DBNs, thus contributing significantly to advancements in rocket propulsion. The obtained results offer valuable guidelines for enhancing nozzle design and accuracy, as well as facilitate efficiency improvement in aerospace applications, thereby ultimately improving the overall effectiveness of propulsion systems.

Keywords

Main Subjects


Cimini, M., Martelli, E., & Bernardini, M. (2021). Numerical analysis of side-load reduction in a sub-scale dual-bell rocket nozzle. Flow, Turbulence and Combustion, 107(3), 551-574. https://doi.org/10.1007/s10494-021-00243-4
Davis, K., Fortner, E., Heard, M., McCallum, H., & Putzke, H. (2015). Experimental and computational investigation of a dual-bell nozzle. 53rd AIAA Aerospace Sciences Meeting (p. 0377). https://doi.org/10.2514/6.2015-0377
Fluent, A. N. S. Y. S. (2021). Ansys fluent theory guide. ANSYS, Inc. and Ansys Europe, Ltd. Are UL Registered ISO 9001: 2015
Frey, M., & Hagemann, G. (1999). Critical assessment of dual-bell nozzles. Journal of Propulsion and Power, 15(1), 137-143. https://doi.org/10.2514/2.5402
Génin, C., Gernoth, A., & Stark, R. (2013a). Experimental and numerical study of heat flux in dual bell nozzles. Journal of Propulsion and Power, 29(1), 21-26. https://doi.org/10.2514/1.B34479
Génin, C., Stark, R. H., & Schneider, D. (2013b). Transitional behavior of dual bell nozzles: contour optimization. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3841). https://doi.org/10.2514/6.2015-0377
Génin, C., Stark, R., Haidn, O., Quering, K., & Frey, M. (2013c). Experimental and numerical study of dual bell nozzle flow. Progress in Flight Physics, 5, 363-376. https://doi.org/10.1051/eucass/201305363
Génin, C., Stark, R., Karl, S., & Schneider, D. (2012, July). Numerical investigation of dual bell nozzle flow field. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4164). https://doi.org/10.2514/6.2012-4164
Hagemann, G., Immich, H., Van Nguyen, T., & Dumnov, G. E. (1998). Advanced rocket nozzles. Journal of Propulsion and Power, 14(5), 620-634. https://doi.org/10.2514/2.5354
Hagemann, G., Terhardt, M., Haeseler, D., & Frey, M. (2002). Experimental and analytical design verification of the dual-bell concept. Journal of Propulsion and Power, 18(1), 116-122. https://doi.org/10.2514/2.5905
Hamaidia, W., Zebbiche, T., Sellam, M., & Allali, A. (2019). Performance improvement of supersonic nozzles design using a high-temperature model. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(13), 4895-4910. https://doi.org/10.1177/0954410019831862
Hamitouche, T., Sellam, M., Kbab, H., & Bergheul, S. (2019). Design and wall Fluid parameters evaluation of the dual-bell Nozzle. International Journal of Engineering Research and Technology, 12(7), 1064-1074.
Horn, M., & Fisher, S. (1993). Dual-bell altitude compensating nozzles. Pennsylvania State Univ., NASA Propulsion Engineering Research Center, Volume 2.
Kbab, H., Sellam, M., Hamitouche, T., Bergheul, S., & Lagab, L. (2017). Design and performance evaluation of a dual bell nozzle. Acta Astronautica, 130, 52-59. https://doi.org/10.1016/j.actaastro.2016.10.015
Khare, S., & Saha, U. K. (2021). Rocket nozzles: 75 years of research and development. Sādhanā, 46(2), 76. https://doi.org/10.1007/s12046-021-01584-6
Léger, L., Zmijanovic, V., Sellam, M., & Chpoun, A. (2020). Controlled flow regime transition in a dual bell nozzle by secondary radial injection. Experiments in Fluids, 61, 1-15. https://doi.org/10.1007/s00348-020-03086-3
Léger, L., Zmijanovic, V., Sellam, M., & Chpoun, A. (2021). Experimental investigation of forced flow regime transition in a dual bell nozzle by secondary fluidic injection. International Journal of Heat and Fluid Flow, 89, 108818. https://doi.org/10.1016/j.ijheatfluidflow.2021.108818
Liu, Y., & Li, P. (2023). Analysis of the aspiration drag in dual-bell nozzles. International Journal of Aeronautical and Space Sciences, 24(2), 467-474. https://doi.org/10.1007/s42405-022-00541-9
Martelli, E., Nasuti, F., & Onofri, M. (2007). Numerical parametric analysis of dual-bell nozzle flows. AIAA journal, 45(3), 640-650. https://doi.org/10.2514/1.26690
Nürnberger-Génin, C., & Stark, R. (2010). Experimental study on flow transition in dual bell nozzles. Journal of Propulsion and Power, 26(3), 497-502. https://doi.org/10.2514/1.47282
Östlund, J. (2002). Flow processes in rocket engine nozzles with focus on flow separation and side-loads [Doctoral dissertation, Mekanik].
Scharnowski, S., & Kähler, C. J. (2021). Investigation of the base flow of a generic space launcher with dual-bell nozzle. CEAS Space Journal, 13(2), 197-216. https://doi.org/10.1007/s12567-020-00333-5
Schneider, D., & Génin, C. (2016). Numerical investigation of flow transition behavior in cold flow dual-bell rocket nozzles. Journal of Propulsion and Power, 32(5), 1212-1219. https://doi.org/10.2514/1.B36010
Stark, R., & Nürnberger-Génin, C. (2010, July). Side loads in dual bell nozzles, part i: Phenomenology. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 6729). https://doi.org/10.2514/6.2010-6729
Stark, R., Génin, C., Mader, C., Maier, D., Schneider, D., & Wohlhüter, M. (2019). Design of a film-cooled dual-bell nozzle. Acta Astronautica, 158, 342-350. https://doi.org/10.1016/j.actaastro.2018.05.056
Stark, R., Génin, C., Schneider, D., & Fromm, C. (2016). Ariane 5 performance optimization using dual-bell nozzle extension. Journal of Spacecraft and Rockets, 53(4), 743-750. https://doi.org/10.2514/1.A33363
Toufik, H., Mohamed, S., Hakim, K., Saïd, B., & Lynda, L. (2016, March). Design and performance of the dual-bell nozzle. 2016 IEEE Aerospace Conference (pp. 1-7). IEEE. https://doi.org/10.1109/AERO.2016.7500518
Verma, M., Arya, N., & De, A. (2020). Investigation of flow characteristics inside a dual bell nozzle with and without film cooling. Aerospace Science and Technology, 99, 105741. https://doi.org/10.1016/j.ast.2020.105741
Verma, S. B., Hadjadj, A., & Haidn, O. (2015). Unsteady flow conditions during the dual-bell sneak transition. Journal of Propulsion and Power, 31(4), 1175-1183. https://doi.org/10.2514/1.B35558
Verma, S. B., Stark, R., & Haidn, O. (2013). Reynolds number influence on dual-bell transition phenomena. Journal of Propulsion and Power, 29(3), 602-609. https://doi.org/10.2514/1.B34734
Verma, S. B., Stark, R., & Haidn, O. (2014). Effect of ambient pressure fluctuations on dual-bell transition behavior. Journal of Propulsion and Power, 30(5), 1192-1198. https://doi.org/10.2514/1.B35067
Verma, S. B., Stark, R., Nuerenberger-Genin, C., & Haidn, O. (2010). Cold-gas experiments to study the flow separation characteristics of a dual-bell nozzle during its transition modes. Shock Waves, 20, 191-203. https://doi.org/10.1007/s00193-010-0259-x
Wu, K., Sohn, G. C., Deng, R., Jia, H., Kim, H. D., & Su, X. (2023). Study on wall pressure and hysteresis behaviors of a novel dual-bell nozzle. Journal of Mechanical Science and Technology, 37(9), 4639-4646. https://doi.org/10.1007/s12206-023-0819-5
Yazhou, L. I. U., Ping, L. I., Hongyu, C. H. E. N., Jianwen, Y. A. N. G., & Yidan, C. H. E. N. (2022). Design of dual-bell nozzles with different extension pressure distributions. 37(2), 424-432. https://doi.org/10.13224/j.cnki.jasp.20210096