Bai, X., Sun, M., Zhang, W., & Wang, J. (2024). A novel elli-circ oscillator applied in VIVACE converter and its vibration characteristics and energy harvesting efficiency.
Energy, 296, 131143.
https://doi.org/10.1016/j.energy.2024.131143
Bekhti, A., Tata, M., Hamane, D., & Maizi, M. (2022). A CFD Study of the Effects of Slots on Energy Harvesting from Flow-Induced Circular Cylinder Vibrations.
Journal of Applied Fluid Mechanics, 15(5), 1581-1591.
https://doi.org/10.47176/jafm.15.05.1098
Bernitsas, M. M. (2016). Harvesting energy by flow included motions. Springer Handbook of Ocean Engineering, 1163-1244.
Bernitsas, M. M., Raghavan, K., Ben-Simon, Y., & Garcia, E. (2008). VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A new concept in generation of clean and renewable energy from fluid flow.
Journal of Offshore Mechanics and Arctic Engineering-transactions of The Asme, 130, 041101.
https://doi.org/10.1115/1.2957913
Blevins, R. D. (1977). Flow-induced vibration. New York.
Chang, C. C. J., Kumar, R. A., & Bernitsas, M. M. (2011). VIV and galloping of single circular cylinder with surface roughness at 3.0× 10
4≤ Re≤ 1.2× 10
5.
Ocean Engineering, 38(16), 1713-1732.
https://doi.org/10.1016/j.oceaneng.2011.07.013
Ding, L., Zhang, L., Bernitsas, M. M., & Chang, C. C. (2016). Numerical simulation and experimental validation for energy harvesting of single-cylinder VIVACE converter with passive turbulence control.
Renewable Energy, 85, 1246-1259.
https://doi.org/10.1016/j.renene.2015.07.088
He, X., Yang, X., & Jiang, S. (2018). Enhancement of wind energy harvesting by interaction between vortex-induced vibration and galloping.
Applied Physics Letters, 112, 033901.
https://doi.org/10.1063/1.5007121
Hu, G., Liu, F., Li, L., Li, C., & Kwok, K. C. S. (2019). Wind energy harvesting performance of tandem circular cylinders with triangular protrusions.
Journal of Fluids and Structures, 91, 102780.
https://doi.org/10.1016/j.jfluidstructs.2019.102780
Hu, G., Tse, K. T., Wei, M., Naseer, R., Abdelkefi, A., & Kwok, K. C. (2018). Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments.
Applied Energy, 226, 682-689.
https://doi.org/10.1016/j.apenergy.2018.06.056
Khalak, A., & Williamson, C. (1996). Dynamics of a hydroelastic cylinder with very low mass and damping.
Journal of Fluids and Structures, 10(5), 455-472.
https://doi.org/10.1006/jfls.1996.0031
Khalak, A., & Williamson, C. H. K. (1999). Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping.
Journal of Fluids and Structures, 13, 813-851.
https://doi.org/10.1006/jfls.1999.0236
Kumar, V., Garg, H., Sharma, G., & Bhardwaj, R. (2020). Harnessing flow-induced vibration of a D-section cylinder for convective heat transfer augmentation in laminar channel flow.
Physics of Fluids, 32(8).
https://doi.org/10.1063/5.0016097
Park, H., Bernitsas, M. M., & Ajith Kumar, R. (2012). Selective roughness in the boundary layer to suppress flow-induced motions of circular cylinder at 30,000<Re<120,000.
Journal of Offshore Mechanics and Arctic Engineering, 134(4).
https://doi.org/10.1115/1.4006235
Park, H., Kim, E. S., & Bernitsas, M. M. (2017). Sensitivity to zone covering of the map of passive turbulence control to flow-induced motions for a circular cylinder at 30,000≤ Re≤ 120,000.
Journal of Offshore Mechanics and Arctic Engineering, 139(2), 021802.
https://doi.org/10.1115/1.4035140
Raghavan, K., & Bernitsas, M. (2011). Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports.
Ocean Engineering, 38(5-6), 719-731.
https://doi.org/10.1016/j.oceaneng.2010.09.003
Sun, H., Ma, C., & Bernitsas, M. M. (2018). Hydrokinetic power conversion using flow induced vibrations with nonlinear (adaptive piecewise-linear) springs.
Energy, 143, 1085-1106.
https://doi.org/10.1016/j.energy.2017.10.140
Wang, J., Gu, S., Abdelkefi, A., & Bose, C. (2021). Enhancing piezoelectric energy harvesting from the flow-induced vibration of a circular cylinder using dual splitters.
Smart Materials and Structures.
https://doi.org/10.1088/1361-665X/abefb5
Wang, J., Sheng, L., & Ding, L. (2023). A comprehensive numerical study on flow-induced vibrations with various groove structures: Suppression or enhancing energy scavenging.
Ocean Engineering.
https://doi.org/10.1016/j.oceaneng.2023.113781
Wang, Junlei, Zhao, Guifeng, Zhang, Meng, & Zhien. (2018). Efficient study of a coarse structure number on the bluff body during the harvesting of wind energy.
Energy Sources Part A Recovery Utilization & Environmental Effects.
https://doi.org/10.1080/15567036.2018.1486916
Yan, Z., Wang, L., Hajj, M. R., Yan, Z., Sun, Y., & Tan, T. (2020). Energy harvesting from iced-conductor inspired wake galloping.
Extreme Mechanics Letters, 35, 100633.
https://doi.org/10.1016/j.eml.2020.100633
Yang, Y., Zhao, L., & Tang, L. (2013). Comparative study of tip cross-sections for efficient galloping energy harvesting.
Applied Physics Letters, 102(6).
https://doi.org/10.1063/1.4792737
Zdravkovich, M. M. (1990). Conceptual overview of laminar and turbulent flows past smooth and rough circular cylinders.
Journal of Wind Engineering and Industrial Aerodynamics, 33(1–2), 53-62.
https://doi.org/10.1016/0167-6105(90)90020-D
Zhao, G., Xu, J., Duan, K., Zhang, M., Zhu, H., & Wang, J. (2020). Numerical analysis of hydroenergy harvesting from vortex-induced vibrations of a cylinder with groove structures.
Ocean Engineering, 218, 108219.
https://doi.org/10.1016/j.oceaneng.2020.108219
Zhou, B., Wang, X., Guo, W., Zheng, J., & Tan, S. K. (2015). Experimental measurements of the drag force and the near-wake flow patterns of a longitudinally grooved cylinder.
Journal of Wind Engineering and Industrial Aerodynamics, 145, 30-41.
https://doi.org/10.1016/j.jweia.2015.05.013
Zhu, H., Gao, Y., & Zhou, T. (2018). Flow-induced vibration of a locally rough cylinder with two symmetrical strips attached on its surface: Effect of the location and shape of strips.
Applied Ocean Research, 72, 122-140.
https://doi.org/10.1016/j.apor.2018.01.009