Examining the Impact of Using Hemispherical Dimples-protrusions on Heat Transfer and Pressure Drop in the Finned-tube Heat Exchanger with Different Configurations

Document Type : Regular Article

Authors

Department of mechanical engineering, Yazd university, Yazd, Iran

10.47176/jafm.18.7.3196

Abstract

In comparison to a plain fin, the addition of dimples or protrusions to the fins of a finned tube heat exchanger significantly affects the promotion of heat transfer. The impact of the number of dimples or protrusions and the arrangement of inline and staggered configurations on pressure drop and heat transfer is examined numerically in this research. The outcomes demonstrate that increasing the number of dimples and protrusions significantly affects heat transfer magnitude and pressure drop. Increasing the number of dimples and protrusions within the Reynolds number range of 150-1200 enhances the friction coefficient and heat transfer by 108%-163% and 16%-112%, respectively, in contrast to the plain fin. In evaluating the result of the arrangement of inline and staggered configurations, the heat transfer amounts of these two models are almost the same, and the friction coefficient is higher in the model that uses the arrangement of inline. In the inline arrangement model utilizing dimples-protrusions, the resultant heat transfer and friction coefficient increase 11%-92% and 64%-113% within the Reynolds number range of 150-1200, respectively, compared to the plain fin.

Keywords

Main Subjects


Aroonrat, K., & Wongwises, S. (2019) Experimental investigation of condensation heat transfer and pressure drop of R-134a flowing inside dimpled tubes with different dimpled depths. International Journal of Heat and Mass Transfer, 128, 783-793. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.039
Azad, G. S., Huang, Y., & Han, J. (2000). Impingement heat transfer on dimpled surfaces using a transient liquid crystal technique. Journal of thermophysics and heat transfer, 14(2), 186-193. https://doi.org/10.2514/2.6530
Bi, C., Tang, G., & Tao, W. (2013). Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves. Applied Thermal Engineering 55(1-2), 121-132. https://doi.org/10.1016/j.applthermaleng.2013.03.007
Cheraghi, M. H., Ameri, M., & Shahabadi, M. (2020). Numerical study on the heat transfer enhancement and pressure drop inside deep dimpled tubes. International Journal of Heat and Mass Transfer 147, 118845. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118845
Du, W., Luo, L., Wang, S., & Zheng, X. (2020). Heat Transfer Characteristics in a Pin Finned Channel With Different Dimple Locations. Heat Transfer Engineering 41(14), 1232–1251. https://doi.org/10.1080/01457632.2019.1637114
Elsaid, A. M., Abdelhady, A. M., Abdelaziz, G. B., & Halim, M. A. (2023). Performance improvement for chilled water air conditioning cooling coils with various dimple fin geometries. International Journal of Thermal Sciences193, 108441. https://doi.org/10.1016/j.ijthermalsci.2023.108441
Fan, J. F., Ding, W. K., He, Y. L., & Tao, W. Q. (2012). Three-dimensional numerical study of fluid and heat transfer characteristics of dimpled fin surfaces. Numerical Heat Transfer; Part A: Applications, 62(4), 271–294. https://doi.org/10.1080/10407782.2012.666931
Gupta, A., Kumar, M., & Patil, A. K., (2019) Enhanced heat transfer in plate fin heat sink with dimples and protrusions. Heat and Mass Transfer, 55(8), 2247–2260. https://doi.org/10.1007/s00231-019-02561-w
Hwang, S., Kim, D., Min, J., & Jeong, J. (2012). CFD analysis of fin tube heat exchanger with a pair of delta winglet vortex generators. Journal of Mechanical Science and Technology, 26(9), 2949-2958. https://doi.10.1007/s12206-012-0702-2
Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (1996). Fundamentals of heat and mass transfer (6, 116). Wiley.
Jing, Q., Xie, Y., & Zhang, D. (2019). Effects of channel outlet configuration and dimple/protrusion arrangement on the blade trailing edge cooling performance. Applied Sciences, 9(14), 2900. https://doi.org/10.3390/app9142900
Kaood, A., Aboulmagd, A., Othman, H., & ElDegwy, A. (2022). Numerical investigation of the thermal-hydraulic characteristics of turbulent flow in conical tubes with dimples. Case Studies in Thermal Engineering36, 102166. https://doi.org/10.1016/j.csite.2022.102166
Katkhaw, N., Vorayos, N., Kiatsiriroat, T., Khunatorn, Y., Bunturat, D., & Nuntaphan, A. (2014). Heat transfer behavior of flat plate having 45 ellipsoidal dimpled surfaces. Case Studies in Thermal Engineering 2, 67–74. https://doi.org/10.1016/j.csite.2013.12.002
Kumar, A., Maithani, R., Raj, A., & Suri, S. (2017). Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube. Heat and Mass Transfer, 53, 3501-3516. https://doi.10.1007/s00231-017-2080-x
Li, M., Khan, T. S., Al-hajri, E., & Ayub, Z. H. (2016). Single phase heat transfer and pressure drop analysis of a dimpled enhanced tube. Applied Thermal Engineering 101, 38–46. https://doi.org/10.1016/j.applthermaleng.2016.03.042
Lotfi, B., & Sunden, B. (2019). Thermo-hydraulic performance enhancement of finned elliptical tube heat exchangers by utilizing innovative dimple turbulators. Heat Transfer Engineering, 41(13), 1117-1142. https://doi.org/10.1080/01457632.2019.1611132
Luo, D., Li, Z., Yan, Y., Yang, L., Cao, J., Yang, X., & Cao, B. (2024). Design and optimization of a thermoelectric generator with dimple fins to achieve higher net power. Applied Thermal Engineering, 123735. https://doi.org/10.1016/j.applthermaleng.2024.123735
Luo, L., Wang, C., Wang, L., Sunden, B., & Wang, S. (2016). Heat transfer and friction factor performance in a pin fin wedge duct with different dimple arrangements. Numerical Heat Transfer; Part A: Applications, 69(2), 209–226. https://doi.org/10.1080/10407782.2015.1052301
Malapur, H. V., Havaldar, S. N., & Kharade, U. V. (2022). Heat transfer enhancement of an internally and externally dimpled pipe heat exchanger–Numerical study. Materials Today: Proceedings63, 587-594. https://doi.org/10.1016/j.matpr.2022.04.155
Mehrjardi, S. A. A., Khademi, A., Said, Z., Ushak, S., & Chamkha, A. J. (2023). Effect of elliptical dimples on heat transfer performance in a shell and tube heat exchanger. Heat and Mass Transfer59(10), 1781-1791. https://doi.org/10.1007/s00231-023-03367-7
Modi, A., Kalel, N., & Rathod, M. (2020). Thermal performance augmentation of fin-and-tube heat exchanger using rectangular winglet vortex generators having circular punched holes. International Journal of Heat and Mass Transfer, 158, 119727. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119724
Paul, S., Lubaba, N., Pratik, N. A., Ali, M. H., & Alam, M. M. (2023). Computational investigation of cross flow heat exchanger: A study for performance enhancement using spherical dimples on fin surface. International Journal of Thermofluids20, 100483. https://doi.org/10.1016/j.ijft.2023.100483
Piper, M., Zibart, A., Djakow, E., Springer, R., Homberg, W., & Kenig, E. Y. (2019). Heat transfer enhancement in pillow-plate heat exchangers with dimpled surfaces: A numerical study. Applied Thermal Engineering, 153, 142-146. https://doi.org/10.1016/j.applthermaleng.2019.02.082
Rao, Y., Li, B., & Feng, Y. (2015). Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop dimples. Experimental Thermal and Fluid Science, 61, 201–209. https://doi.org/10.1016/j.expthermflusci.2014.10.030
Rao, Y., Wan, C., & Xu, Y. (2012a). An experimental study of pressure loss and heat transfer in the pin fin-dimple channels with various dimple depths. International Journal of Heat and Mass Transfer, 55(23–24), 6723–6733. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.081
Rao, Y., Xu, Y., & Wan, C. (2012b). An experimental and numerical study of flow and heat transfer in channels with pin fin-dimple and pin fin arrays. Experimental Thermal and Fluid Science 38, 237-247. https://doi.org/10.1016/j.expthermflusci.2011.12.012
Sangtarash, F., & Shokuhmand, H. (2015). Experimental and numerical investigation of the heat transfer augmentation and pressure drop in simple, dimple and perforated dimple louver fin banks with an inline or staggered arrangement. Applied Thermal Engineering 82, 194-205. https://doi.org/10.1016/j.applthermaleng.2015.02.073
Seo, Y., Lee, H., Jeon, S., Ku, T., Kang, B., & Kim, J. (2012). Homogenization of Dimpled Tube and Its Application to Structural Integrity Evaluation for a Dimple-type EGR Cooler using FEM. International Journal of Precision Engineering and Manufacturing, 13(2), 183–191. https://doi.10.1007/s12541-012-0023-5
Sen, P., Chen, M., & Bai, B. (2024). Heat transfer enhancement of air flow through new types of perforated dimple/protrusion fins. Applied Thermal Engineering, 256, 124030. https://doi.org/10.1016/j.applthermaleng.2024.124030
Song, K., Yang, Q., Sun, K., Wu, X., Zhang, Q., & Hou, Q. (2024). Performance promotion by novel fin configurations with ellipsoidal dimple-protrusion for a circle tube-fin heat exchanger. International Communications in Heat and Mass Transfer157, 107731. https://doi.org/10.1016/j.icheatmasstransfer.2024.107731
Valentino, M., Tran, L., Ricklick, M., & Kapat, J. (2012). A study of heat transfer augmentation for recuperative heat exchangers: Comparison between three dimple geometries. Journal of Engineering for Gas Turbines and Power 134(7). https://doi.org/10.1115/1.4005990
Vignesh, S., Moorthy, V. S, & Nallakumarasamy, G. (2017). Experimental and CFD analysis of concentric dimple tube heat exchanger. International Journal of Emerging Technologies in Engineering Research (IJETER), 5(7), 18–26.
Vorayos, N., Katkhaw, N., Kiatsiriroat, T., & Nuntaphan, A. (2016). Heat transfer behavior of flat plate having spherical dimpled surfaces. Case Studies in Thermal Engineering, 8, 370–377. https://doi.org/10.1016/j.csite.2016.09.004
Wang, C., Chang, Y. J, Hsieh, Y. C, Lin, Y. T. (1996) Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins. International Journal of Refrigeration, 19(4), 223–230. https://doi.org/10.1016/0140-7007(96)00021-7
Wang, Y., Li, S., Xie, X., Deng, Y., Liu, X., & Su, C. (2018). Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger. Applied Energy, 218, 391–401. https://doi.org/10.1016/j.apenergy.2018.02.176
Wang, Y., Li, S., Yang, X., Deng, Y., & Su, C. (2016). Numerical and experimental investigation for heat transfer enhancement by dimpled surface heat exchanger in thermoelectric generator. Journal of Electronic Materials, 45(3), 1792–1802. https://doi.10.1007/s11664-015-4228-0
Wu, X., Feng, L., Liu, D., Meng, H., & Lu, Y. (2014). Numerical study on the effect of tube rows on the heat transfer characteristic of dimpled fin. Advances in Mechanical Engineering, 6, 637052. https://doi.org/10.1155/2014/637052
Xie, S., Liang, Z., Zhang, L., Wang, Y., Ding, H., & Zhang, J. (2018). Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions. International Journal of Heat and Mass Transfer, 122, 602-613. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.106
Yaïci, W., Ghorab, M., & Entchev, E. (2016). 3D CFD study of the effect of inlet air flow maldistribution on plate-fin-tube heat exchanger design and thermal–hydraulic performance. International Journal of Heat and Mass Transfer101, 527-541. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.063
Ying, P., He, Y., Tang, H., & Ren, Y. (2021). Numerical and experimental investigation of flow and heat transfer in heat exchanger channels with different dimples geometries. Machines, 9(4), 72. https://doi.org/10.3390/machines9040072
Zheng, F .C., Liu, Z., Lin, M., Nugud, J., Wang, L. C., Chang, L. M., & Wang, L. B. (2018). Experimental study on heat transfer performances of flat tube bank fin heat exchanger using four different fin patterns. Journal of Heat Transfer, 140(4). https://doi.org/10.1115/1.4038419