Ai, B., Gao, J., Hao, B., Guo, B., & Liang, J. J. J. o. A. F. M. (2023). Effect of obstacle length variation on hydrogen deflagration in a confined space based on large eddy simulations.
Journal of Applied Fluid Mechanics,
17(2), 384-397.
https://doi.org/10.47176/jafm.17.02.2106
Bai, C., & Wang, Y. J. J. O. L. P. I. T. P. I. (2015). Study of the explosion parameters of vapor–liquid diethyl ether/air mixtures.
Journal of Loss Prevention in the Process Industries,
38, 139-147.
https://doi.org/10.1016/j.jlp.2015.09.007
Ballal, D., Lefebvre, A. J. C., & Flame. (1975). The influence of spark discharge characteristics on minimum ignition energy in flowing gases.
Combustion and Flame,
24, 99-108.
https://doi.org/10.1016/0010-2180(75)90132-7
Barletta, A., Magyari, E. J. I. J. o. H., & Transfer, M. (2007). Forced convection with viscous dissipation in the thermal entrance region of a circular duct with prescribed wall heat flux.
International Journal of Heat and Mass Transfer, 50(1-2), 26-35.
https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.036
Bin, L. I., Li-Feng, X., Ou-Qi, N. I., Li-Fang, R., & Zheng-Hong, W. J. J. O. B. (2010). Study on detonation characteristics of fuel drops cloud.
Dandao Xuebao (Journal of Ballistics),
22(2), 90-93.
https://api.semanticscholar.org/CorpusID:102319845
Brophy, C. M., Netzer, D. W., & Forster, D. L. (1998).
Detonation studies of JP-10 with oxygen and air for pulse detonation engine development. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
https://doi.org/10.2514/6.1998-4003
Burgoyne, J., Cohen, L. J. P. O. T. R. S. O. L. S. A. M., & Sciences, P. (1954). The effect of drop size on flame propagation in liquid aerosols.
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
225(1162), 375-392.
https://doi.org/10.1098/rspa.1954.0210
Chan, K. K., & Jou, C. S. J. F. (1988). An experimental and theoretical investigation of the transition phenomenon in fuel spray deflagration: 1. The experiment.
Fuel,
67(9), 1223-1227.
https://doi.org/10.1016/0016-2361(88)90042-7
Chan, K. K., & Wu, S. R. J. F. (1989). An experimental and theoretical investigation of the transition phenomenon in fuel spray deflagration: 2. The model.
Fuel,
68(2), 139-144.
https://doi.org/10.1016/0016-2361(89)90313-X
Danis, A. M., Namer, I., Cernansky, N. P. J. C., & flame. (1988). Droplet size and equivalence ratio effects on spark ignition of monodisperse N-heptane and methanol sprays.
Combustion and Flame,
74(3), 285-294.
https://doi.org/10.1016/0010-2180(88)90074-0
Faeth, G. M., & Olson, D. R. J. S. T. (1968). The ignition of hydrocarbon fuel droplets in air.
SAE Transactions, 1793-1802.
https://doi.org/10.4271/680465
Jia, J., Yao, G., Li, Q., Xu, J., & Lu, S. J. C. S. i. T. E. (2023). Experimental study on deflagration characteristics of non-uniform oil mist in an enclosed chamber.
Case Studies in Thermal Engineering,
51, 103586.
https://doi.org/10.1016/j.csite.2023.103586
Kopyt, N. K., Struchaev, A. I., Krasnoshchekov, Y. I., Rogov, N. K., Shamshev, K. N. J. C., Explosion, & Waves, S. (1989). Combustion of large volumes of dispersed fuels and the evolution of their products in the free atmosphere.
Combustion, Explosion and Shock Waves,
25(3), 279-285.
https://doi.org/10.1007/BF00788797
Li, Q., Jia, J., Lin, J., Xu, J., & Lu, S. J. I. J. o. T. S. (2024). Effect of ignition distance on deflagration characteristics of non-uniform oil mist in closed cabins.
International Journal of Thermal Sciences,
198, 108887.
https://doi.org/10.1016/j.ijthermalsci.2024.108887
Liu, Q., Bai, C., Jiang, L., Dai, W. J. C., & flame. (2010). Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures.
Combustion and Flame,
157(1), 106-117.
https://doi.org/10.1016/j.combustflame.2009.06.026
Parsinejad, F., Arcari, C., Metghalchi, H. J. C. S., & Technology. (2006). Flame structure and burning speed of JP-10 air mixtures.
Combustion Science and Technology,
178(5), 975-1000.
https://doi.org/10.1080/00102200500270080
Perdana, D., Hanifudin, M., Rosidin, M., & Winarko, W. J. J. O. A. F. M. (2023). Characteristics of olive oil droplet combustion with various temperatures and directions of magnetic fields in the combustion chamber.
Journal of Applied Fluid Mechanics,
16(9), 1828-1838.
https://doi.org/10.47176/jafm.16.09.1735
Wang, C., Liu, H., Yang, S., Guo, F., Sun, H., & Liu, X. (2017). Experimental study of spray deflagration mode in an enclosed compartment.
Journal of Loss Prevention in the Process Industries,
50, 1-6.
https://doi.org/10.1016/j.jlp.2017.08.013
Wang, T., Yang, P., Yi, W., Luo, Z., Cheng, F., Ding, X., & Protection, E. (2022). Effect of obstacle shape on the deflagration characteristics of premixed LPG-air mixtures in a closed tube.
Process Safety and Environmental Protection, 168, 248-256.
https://doi.org/10.1016/j.psep.2022.09.079
Xu, A., Xu, B. R., & Xi, H. D. J. J. O. F. M. (2023). Wall-sheared thermal convection: heat transfer enhancement and turbulence relaminarization.
Journal of Fluid Mechanics, 960, A2.
https://doi.org/10.1017/jfm.2023.173
Zabetakis, M. G. (1964).
Flammability characteristics of combustible gases and vapors. Bureau of Mines, Pittsburgh, PA. United States, Issue.
https://doi.org/10.2172/7328370
Zhou, N., Wang, Y., Li, X., Yin, Q., Shi, Z., Zhao, P., & Effects, E. (2024). Study on the influence of ignition position on the deflagration characteristics of oil mist in ship cabins.
Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,
46(1), 450-461.
https://doi.org/10.1080/15567036.2023.2284995