Experimental Study on the Effect of the Spray Time on the Deflagration Characteristics of Oil Mist in a Closed Chamber

Document Type : Regular Article

Authors

1 School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China

2 Institute of Industrial Safety, China Academy of Safety Production Research, Beijing 100012, China

3 School of Materials Engineering, Changshu Institute of Technology, Suzhou, 215500, China

4 Tianjin Fire Research Institute of MEM, Tianjin 300381, China

10.47176/jafm.18.7.3221

Abstract

The deflagration of oil mist in closed chambers often causes severe ship fire accidents. Based on a self-built visual oil mist deflagration experiment platform, this research analyzed the effect of the spray time on the oil mist deflagration characteristics and focused on the flame propagation process, velocity, gas temperature, and overpressure in a closed chamber. The results show that with increasing spray time, the flame propagation velocity, gas temperature and deflagration overpressure increased. However, with the continuous increase in spray time, the deflagration characteristics of oil mist decreased. When the spray continued for 35 s, the peak overpressure was measured to be approximately 1.655 MPa. When the spray time extended to 95 s, the peak overpressure decreased by approximately 31.2% relative to the value at 35 s because the increase in spray time contributed to a more stable spray state and a larger diffusion range. Concurrently, the evaporation of liquid droplets increased of the kerosene vapor content. These factors contribute to a more intense oil mist deflagration. However, continuous increase in spray time results in an excessive accumulation of fuel, which makes an insufficient reaction and a significant reduction in deflagration characteristics. Oil mist deflagration process can be divided into four stages: deflagration, turbulent combustion, stretching and self-extinguishing. The high-temperature and high-pressure range of oil mist deflagration concentrate near the deflagration center, approximately 100 cm from left wall of the chamber. 

Keywords

Main Subjects


Ai, B., Gao, J., Hao, B., Guo, B., & Liang, J. J. J. o. A. F. M. (2023). Effect of obstacle length variation on hydrogen deflagration in a confined space based on large eddy simulations. Journal of Applied Fluid Mechanics, 17(2), 384-397. https://doi.org/10.47176/jafm.17.02.2106
Bai, C., & Wang, Y. J. J. O. L. P. I. T. P. I. (2015). Study of the explosion parameters of vapor–liquid diethyl ether/air mixtures. Journal of Loss Prevention in the Process Industries, 38, 139-147. https://doi.org/10.1016/j.jlp.2015.09.007
Ballal, D., Lefebvre, A. J. C., & Flame. (1975). The influence of spark discharge characteristics on minimum ignition energy in flowing gases. Combustion and Flame, 24, 99-108. https://doi.org/10.1016/0010-2180(75)90132-7
Ballal, D. R., & Lefebvre, A. H. (1981). Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air. Symposium (International) on combustion. https://doi.org/10.1016/S0082-0784(81)80037-9
Bar-Or, R., Sichel, M., & Nicholls, J. (1981). The propagation of cylindrical detonations in monodisperse sprays. Symposium (International) on Combustion. https://doi.org/10.1016/S0082-0784(81)80163-4
Barletta, A., Magyari, E. J. I. J. o. H., & Transfer, M. (2007). Forced convection with viscous dissipation in the thermal entrance region of a circular duct with prescribed wall heat flux. International Journal of Heat and Mass Transfer, 50(1-2), 26-35. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.036
Benedick, W. B., Tieszen, S. R., Knystautas, R., & Lee, J. H. S. (1991). Detonation of unconfined large-scale fuel spray-air clouds. Progress in Astronautics and Aeronautics, 133, 297-310. https://doi.org/10.2514/5.9781600866067.0297.0310
Bin, L. I., Li-Feng, X., Ou-Qi, N. I., Li-Fang, R., & Zheng-Hong, W. J. J. O. B. (2010). Study on detonation characteristics of fuel drops cloud. Dandao Xuebao (Journal of Ballistics), 22(2), 90-93. https://api.semanticscholar.org/CorpusID:102319845
Brophy, C. M., Netzer, D. W., & Forster, D. L. (1998). Detonation studies of JP-10 with oxygen and air for pulse detonation engine development. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. https://doi.org/10.2514/6.1998-4003
Burgoyne, J., Cohen, L. J. P. O. T. R. S. O. L. S. A. M., & Sciences, P. (1954). The effect of drop size on flame propagation in liquid aerosols. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 225(1162), 375-392. https://doi.org/10.1098/rspa.1954.0210
Chan, K. K., & Jou, C. S. J. F. (1988). An experimental and theoretical investigation of the transition phenomenon in fuel spray deflagration: 1. The experiment. Fuel, 67(9), 1223-1227. https://doi.org/10.1016/0016-2361(88)90042-7
Chan, K. K., & Wu, S. R. J. F. (1989). An experimental and theoretical investigation of the transition phenomenon in fuel spray deflagration: 2. The model. Fuel, 68(2), 139-144. https://doi.org/10.1016/0016-2361(89)90313-X
Danis, A. M., Namer, I., Cernansky, N. P. J. C., & flame. (1988). Droplet size and equivalence ratio effects on spark ignition of monodisperse N-heptane and methanol sprays. Combustion and Flame, 74(3), 285-294. https://doi.org/10.1016/0010-2180(88)90074-0
Faeth, G. M., & Olson, D. R. J. S. T. (1968). The ignition of hydrocarbon fuel droplets in air. SAE Transactions, 1793-1802. https://doi.org/10.4271/680465
Hoover, J., Bailey, J., Willauer, H., & Williams, F. J. N. M. R. (2005). Evaluation of submarine hydraulic system explosion and fire hazards. NRL Memorandum Report, 6180-6105. https://api.semanticscholar.org/CorpusID:107992601
Jia, J., Yao, G., Li, Q., Xu, J., & Lu, S. J. C. S. i. T. E. (2023). Experimental study on deflagration characteristics of non-uniform oil mist in an enclosed chamber. Case Studies in Thermal Engineering, 51, 103586. https://doi.org/10.1016/j.csite.2023.103586
Jinxian, L., Haobo, H., & Chunguo, Y. J. J. O. A. (2008). Experimental research on gas/liquid coaxial swirling nozzle of atomization and combustion under normal pressure. Journal of Astronautics, 29(5), 1563-1569. https://www.researchgate.net/publication/296761541_Experimental_research_on_gasliquid_coaxial_swirling_nozzle_of_atomization_and_combustion_under_normal_pressure
Kim, A., Liu, Z., & Crampton, G. (2007). Study of Explosion Protection in a Small Compartment. Fire Technology, 43(2), 145-172. https://doi.org/10.1007/s10694-007-0008-6
Kopyt, N. K., Struchaev, A. I., Krasnoshchekov, Y. I., Rogov, N. K., Shamshev, K. N. J. C., Explosion, & Waves, S. (1989). Combustion of large volumes of dispersed fuels and the evolution of their products in the free atmosphere. Combustion, Explosion and Shock Waves, 25(3), 279-285. https://doi.org/10.1007/BF00788797
Li, Q., Jia, J., Lin, J., Xu, J., & Lu, S. J. I. J. o. T. S. (2024). Effect of ignition distance on deflagration characteristics of non-uniform oil mist in closed cabins. International Journal of Thermal Sciences, 198, 108887. https://doi.org/10.1016/j.ijthermalsci.2024.108887
Liu, Q., Bai, C., Jiang, L., Dai, W. J. C., & flame. (2010). Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures. Combustion and Flame, 157(1), 106-117. https://doi.org/10.1016/j.combustflame.2009.06.026
Liu, X., Wang, Y., & Zhang, Q. J. F. (2016). A study of the explosion parameters of vapor–liquid two-phase JP-10/air mixtures. Fuel, 165, 279-288. https://doi.org/10.1016/j.fuel.2015.10.081
Parsinejad, F., Arcari, C., Metghalchi, H. J. C. S., & Technology. (2006). Flame structure and burning speed of JP-10 air mixtures. Combustion Science and Technology, 178(5), 975-1000. https://doi.org/10.1080/00102200500270080
Perdana, D., Hanifudin, M., Rosidin, M., & Winarko, W. J. J. O. A. F. M. (2023). Characteristics of olive oil droplet combustion with various temperatures and directions of magnetic fields in the combustion chamber. Journal of Applied Fluid Mechanics, 16(9), 1828-1838. https://doi.org/10.47176/jafm.16.09.1735
Wang, C., Liu, H., Yang, S., Guo, F., Sun, H., & Liu, X. (2017). Experimental study of spray deflagration mode in an enclosed compartment. Journal of Loss Prevention in the Process Industries, 50, 1-6. https://doi.org/10.1016/j.jlp.2017.08.013
Wang, T., Yang, P., Yi, W., Luo, Z., Cheng, F., Ding, X., & Protection, E. (2022). Effect of obstacle shape on the deflagration characteristics of premixed LPG-air mixtures in a closed tube. Process Safety and Environmental Protection, 168, 248-256. https://doi.org/10.1016/j.psep.2022.09.079
Xie, L. F., Guo, X. Y., Guo, H. J. E., & Waves, S. (2003). Experimental study on the direct initiation of detonation in fuel-air sprays. Explosion and Shock Waves, 23(1), 78-80. https://kns.cnki.net/kcms2/article/abstract?v=HgkNOCd8VPiBPYnrXEsPmi89mGkvqQHCRwV6vMeviuPgMezef4se8GVM9pU2P96-Th0S5j2MZs6H-AoyS7wpVHjXMzaQJXooY_MRj6e5tBtr-BLfZ0ezF2P6eL7nFzuh14WXmvkEVicxDSqy0hkZYDyFan9jeweI&uniplatform=NZKPT
Xu, A., Xu, B. R., & Xi, H. D. J. J. O. F. M. (2023). Wall-sheared thermal convection: heat transfer enhancement and turbulence relaminarization. Journal of Fluid Mechanics, 960, A2. https://doi.org/10.1017/jfm.2023.173
Zabetakis, M. G. (1964). Flammability characteristics of combustible gases and vapors. Bureau of Mines, Pittsburgh, PA. United States, Issue. https://doi.org/10.2172/7328370
Zhou, N., Wang, Y., Li, X., Yin, Q., Shi, Z., Zhao, P., & Effects, E. (2024). Study on the influence of ignition position on the deflagration characteristics of oil mist in ship cabins. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 450-461. https://doi.org/10.1080/15567036.2023.2284995