Azimi, H., Bonakdari, H., Ebtehaj, I., & Michelson, D. G. (2018a). A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed.
Neural Computing and Applications,
29, 249-258.
https://doi.org/10.1007/s00521-016-2560-9.
Azimi, H., Bonakdari, H., Ebtehaj, I., Gharabaghi, B., & Khoshbin, F. (2018b). Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length.
Acta Mechanica,
229, 1197-1214.
https://doi.org/10.1007/s00707-017-2043-9.
Benmalek, A., Hafnaoui, M. A., Madi, M., & Bensaid, M. (2023). Energy dissipation of torrential flows in different basin shapes.
Journal Algérien des Régions Arides,
16(1), 92-100.
https://asjp.cerist.dz/en/article/229471
Chen, J. Y., Liao, Y. Y., & Liu, S. I. (2013). Energy dissipation of hydraulic jump in gradually expanding channel after free overfall.
Journal of the Chinese Institute of Engineers,
36(4), 452-457.
https://doi.org/10.1080/02533839.2012.732263.
Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S., & Abraham, J. (2020a). Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions.
Journal of Groundwater Science and Engineering,
8(4), 396-406.
https://doi.org/10.19637/j.cnki.2305-7068.2020.04.009
Daneshfaraz, R., Aminvash, E., Mirzaee, R., & Abraham, J. (2021a). Predicting the energy dissipation of a rough sudden expansion rectangular stilling basins using the SVM algorithm.
Journal of Applied Research in Water and Wastewater,
8(2), 98-106.
https://doi.org/10.22126/arww.2021.5886.1195
Daneshfaraz, R., Majedi Asl, M., & Mirzaeereza, R. (2019). Experimental study of expanding effect and sand-roughened bed on hydraulic jump characteristics.
Iranian Journal of Soil and Water Research,
50(4), 885-896.
https://doi.org/10.22059/IJSWR.2018.261923.667968
Daneshfaraz, R., MajediAsl, M., Mirzaee, R., & Ghaderi, A. (2020b). The S-jump’s characteristics in the rough sudden expanding stilling basin.
AUT Journal of Civil Engineering,
4(3), 349-356.
https://doi.org/10.22060/ajce.2019.16427.5586.
Daneshfaraz, R., Sadeghfam, S., Aminvash, E., & Abraham, J. P. (2022). Experimental investigation of multiple supercritical flow states and the effect of hysteresis on the relative residual energy in sudden and gradual contractions.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
46(5), 3843-3858.
https://doi.org/10.1007/s40996-022-00818-9
Daneshfaraz, R., Sadeghı, H., Joudı, A. R., & Abraham, J. (2017). Experimental investigation of hydraulic jump characteristics in contractions and expansions.
Sigma Journal of Engineering and Natural Sciences,
35(1), 87-98.
https://sigma.yildiz.edu.tr/article/475
Daneshfaraz, R., Santos, C. A. G., Norouzi, R., Kashani, M. H., AmirRahmani, M., & Band, S. S. (2023). Prediction of drop relative energy dissipation based on Harris Hawks Optimization algorithm.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
47(2), 1197-1210.
https://doi.org/10.1007/s40996-022-00987-7
Ebrahimiyan, S., Hajikandi, H., Shafai Bejestan, M., Jamali, S., & Asadi, E. (2021). Numerical study on the effect of sediment concentration on jump characteristics in trapezoidal channels.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
45, 1059-1075.
https://doi.org/10.1007/s40996-020-00510-w.
Elaswad, S., Saleh, O. K., & Elnikhili, E. (2022). Performance of Screen in a Sudden Expanding Stilling Basin under the Effect of the Submerged Hydraulic Jump.
The Open Civil Engineering Journal,
16, 1-14.
https://doi.org/10.2174/18741495-v16-e2201060.
Gul, E., Dursun, O. F., & Mohammadian, A. (2021). Experimental study and modeling of hydraulic jump for a suddenly expanding stilling basin using different hybrid algorithms.
Water Supply,
21(7), 3752-3771.
https://doi.org/10.2166/ws.2021.139.
Gupta, S. K., & Dwivedi, V. K. (2023). Prediction of depth ratio, jump length and energy loss in sloped channel hydraulic jump for environmental sustainability.
Evergreen, 10
(2), 942-952.
https://doi.org/10.5109/6792889
Gupta, S. K., & Dwivedi, V. K. (2024a). Effect of surface roughness and channel slope on hydraulic jump characteristics: an experimental approach towards sustainable environment.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
48(3), 1695-1713.
https://doi.org/10.1007/s40996-023-01246-z.
Gupta, S. K., & Dwivedi, V. K. (2024b). Experimental investigation of hydraulic jump characteristics in sloping rough surfaces for sustainable development.
Engineering Research Express,
6(2), 025103.
https://doi.org/10.1088/2631-8695/ad3acf
Gupta, S. K., Mehta, R. C., & Dwivedi, V. K. (2013). Modeling of relative length and relative energy loss of free hydraulic jump in horizontal prismatic channel.
Procedia Engineering,
51, 529-537.
https://doi.org/10.1016/j.proeng.2013.01.075
Hafnaoui, M. A., & Debabeche, M. (2023). Displacement of a hydraulic jump in a rectangular channel: experimental study.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
47(2), 1181-1188.
https://doi.org/10.1007/s40996-022-00974-y.
Hamidinejad, A. E., Heidarpour, M., & Ghadampour, Z. (2023). Hydraulic jump control using stilling basin with abruptly expanding and negative step.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
47(6), 3885-3894.
https://doi.org/10.1007/s40996-023-01143-5.
Hasanabadi, H. N., Kavianpour, M. R., Khosrojerdi, A., & Babazadeh, H. (2023). Experimental study of natural bed roughness effect on hydraulic condition and energy dissipation over chutes.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
47(3), 1709-1721.
https://doi.org/10.1007/s40996-023-01060-7
Hassanpour, N., Hosseinzadeh Dalir, A., Farsadizadeh, D., & Gualtieri, C. (2017). An experimental study of hydraulic jump in a gradually expanding rectangular stilling basin with roughened bed.
Water,
9(12), 945.
https://doi.org/10.3390/w9120945
Kim, Y., Choi, G., Park, H., & Byeon, S. (2015). Hydraulic jump and energy dissipation with sluice gate.
Water,
7(9), 5115-5133.
https://doi.org/10.3390/w7095115
Maryami, E., Mohammadpour, R., Beirami, M. K., & Haghighi, A. T. (2021). Prediction of hydraulic jump characteristics in a closed conduit using numerical and analytical methods.
Flow Measurement and Instrumentation,
82, 102071.
https://doi.org/10.1016/j.flowmeasinst.2021.102071
Matin, M. A., Hasan, M., & Islam, M. A. (2008). Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel.
Journal of Civil Engineering (IEB),
36(2), 65-77.
https://www.jce-ieb.org/doc_file/3602001.pdf
Mohammadzadeh-Habili, J., Heidarpour, M., & Samiee, S. (2018). Study of energy dissipation and downstream flow regime of labyrinth weirs.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
42, 111-119.
https://doi.org/10.1007/s40996-017-0088-6
Murzyn, F., & Chanson, H. (2008). Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps.
Experiments in Fluids,
45, 513-521.
https://doi.org/10.1007/s00348-008-0494-4
Omid, M. H., Esmaeeli Varaki, M., Narayanan, R., Zhang, J. M., Xu, W. L., Lin, P. Z., & Wang, W. (2009). Gradually expanding hydraulic jump in a trapezoidal channel.
Journal of Hydraulic Research,
47(3), 396-398.
https://doi.org/10.1080/00221686.2007.9521786
Parsaie, A., Haghiabi, A. H., Saneie, M., & Torabi, H. (2018). Prediction of energy dissipation of flow over stepped spillways using data-driven models.
Iranian Journal of Science and Technology, Transactions of Civil Engineering,
42, 39-53.
https://doi.org/10.1007/s40996-017-0060-5.
Peterka, A. J. (1958). Hydraulic design of stilling basins and energy dissipaters engineering monograph No. 25. US Bureau of Reclamation, Denver Colorado.
Pourabdollah, N., Heidarpour, M., Abedi Koupai, J., & Mohamadzadeh-Habili, J. (2022). Hydraulic jump control using stilling basin with adverse slope and positive step.
ISH Journal of Hydraulic Engineering,
28(1), 10-17.
https://doi.org/10.1080/09715010.2020.1812008
Roushangar, K., & Homayounfar, F. (2019). Prediction characteristics of free and submerged hydraulic jumps on horizontal and sloping beds using SVM method.
KSCE Journal of Civil Engineering,
23(11), 4696-4709.
https://doi.org/10.1007/s12205-019-1070-6.
Sharoonizadeh, S., Ahadiyan, J., Fathi Moghadam, M., Sajjadi, M., & Di Bacco, M. (2022). Experimental investigation on the characteristics of hydraulic jump in expanding channels with a water jet injection system.
Journal of Hydraulic Structures,
7(4), 58-75.
https://doi.org/10.22055/JHS.2022.40233.1203
Torkamanzad, N., Hosseinzadeh Dalir, A., Salmasi, F., & Abbaspour, A. (2019). Hydraulic jump below abrupt asymmetric expanding stilling basin on rough bed.
Water,
11(9), 1756.
https://doi.org/10.3390/w11091756.
Varaki, M. E., Kasi, A., Farhoudi, J., & Sen, D. (2014). Hydraulic jump in a diverging channel with an adverse slope.
Iranian Journal of Science and Technology. Transactions of Civil Engineering,
38(C1), 111.
https://doi.org/10.22099/IJSTC.2014.1848.
Wang, W., Baayoun, A., & Khayat, R. E. (2023). A coherent composite approach for the continuous circular hydraulic jump and vortex structure.
Journal of Fluid Mechanics,
966, A15.
https://doi.org/10.1017/jfm.2023.374
Welahettige, P., Lie, B., & Vaagsaether, K. (2017). Flow regime changes at hydraulic jumps in an open Venturi channel for Newtonian fluid.
The Journal of Computational Multiphase Flows,
9(4), 169-179.
https://doi.org/10.1177/1757482X17722890
Zhang, J., Zhang, Q., Wang, T., Li, S., Diao, Y., Cheng, M., & Baruch, J. (2017). Experimental study on the effect of an expanding conjunction between a spilling basin and the downstream channel on the height after jump.
Arabian Journal for Science and Engineering,
42, 4069-4078.
https://doi.org/10.1007/s13369-017-2568-1.