Experimental Evaluation of Hydraulic Jump Characteristics in Gradually Expanding Sloping Channel

Document Type : Regular Article

Authors

Department of Mechanical Engineering, IET, GLA University Mathura, UP, 281406, India

10.47176/jafm.18.7.3228

Abstract

Understanding hydraulic jumps in gradually expanding sloping channels is crucial for designing eco-friendly water management systems that minimize environmental impacts. This study seeks to investigate how the expansion ratio and channel slope together influence the characteristics of hydraulic jumps. The experiments were performed on four different channel slopes (00, 20, 40, and 60) and four distinct expansion ratios (B = b1/b2) of 0.35, 0.45, 0.55 and 0.75. The Reynolds number was ranged from 7150 to 27750, while the Froude number varied between 2.5 and 8.5 during the experiments. Novel correlations were developed to predict key hydraulic jump parameters, including depth ratio (d₂/d₁), relative energy loss (EL/E₁) and relative jump length (Lj/d₁), by considering the effects of expansion ratio, channel slope and Froude number. The results indicate that as the channel slope increased from 0° to 6°, the depth ratio and relative energy loss increased by approximately30.53% and 15.37%, respectively, while the relative jump length decreased by 11.11%. Conversely, as the expansion ratio decreased from 1.0 to 0.35, the depth ratio and relative jump length were reduced by approximately 9.63% and 10.42%, respectively; while the relative energy loss was increased by 24.21%.These findings highlight the significant influence of channel geometry on hydraulic jump characteristics, offering valuable insights for optimizing water conveyance structures. The proposed correlations provide a novel and intuitive approach to analyze hydraulic jumps in expanding sloping channels, addressing gaps in existing literature and contributing to sustainable water resource management.

Keywords

Main Subjects


Abnavi, M. H. J., Mohammadpour, R., & Beirami, M. K. (2023). Laboratory investigation of hydraulic jump in divergent-convergent conversions. Flow Measurement and Instrumentation94, 102444. https://doi.org/10.1016/j.flowmeasinst.2023.102444
Azimi, H., Bonakdari, H., Ebtehaj, I., & Michelson, D. G. (2018a). A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed. Neural Computing and Applications29, 249-258.  https://doi.org/10.1007/s00521-016-2560-9.
Azimi, H., Bonakdari, H., Ebtehaj, I., Gharabaghi, B., & Khoshbin, F. (2018b). Evolutionary design of generalized group method of data handling-type neural network for estimating the hydraulic jump roller length. Acta Mechanica229, 1197-1214. https://doi.org/10.1007/s00707-017-2043-9.
Baylar, A., Emiroglu, M. E., & Bagatur, T. (2006). An experimental investigation of aeration performance in stepped spillways. Water and Environment Journal20(1), 35-42. https://doi.org/10.1111/j.1747-6593.2005.00009.x
Benmalek, A., Hafnaoui, M. A., Madi, M., & Bensaid, M. (2023). Energy dissipation of torrential flows in different basin shapes. Journal Algérien des Régions Arides16(1), 92-100. https://asjp.cerist.dz/en/article/229471
Bremen, R., & Hager, W. H. (1993). T-jump in abruptly expanding channel. Journal of Hydraulic research31(1), 61-78. https://doi.org/10.1080/00221689309498860.
Carollo, F. G., Ferro, V., & Pampalone, V. (2012). New expression of the hydraulic jump roller length. Journal of Hydraulic Engineering138(11), 995-999. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000634
Chanson, H., & Brattberg, T. (2000). Experimental study of the air–water shear flow in a hydraulic jump. International Journal of Multiphase Flow26(4), 583-607. https://doi.org/10.1016/S0301-9322(99)00016-6.
Chen, J. Y., Liao, Y. Y., & Liu, S. I. (2013). Energy dissipation of hydraulic jump in gradually expanding channel after free overfall. Journal of the Chinese Institute of Engineers36(4), 452-457. https://doi.org/10.1080/02533839.2012.732263.
Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S., & Abraham, J. (2020a). Experimental and numerical investigation for energy dissipation of supercritical flow in sudden contractions. Journal of Groundwater Science and Engineering8(4), 396-406. https://doi.org/10.19637/j.cnki.2305-7068.2020.04.009
Daneshfaraz, R., Aminvash, E., Mirzaee, R., & Abraham, J. (2021a). Predicting the energy dissipation of a rough sudden expansion rectangular stilling basins using the SVM algorithm. Journal of Applied Research in Water and Wastewater8(2), 98-106. https://doi.org/10.22126/arww.2021.5886.1195
Daneshfaraz, R., Majedi Asl, M., & Mirzaeereza, R. (2019). Experimental study of expanding effect and sand-roughened bed on hydraulic jump characteristics. Iranian Journal of Soil and Water Research50(4), 885-896. https://doi.org/10.22059/IJSWR.2018.261923.667968
Daneshfaraz, R., MajediAsl, M., Mirzaee, R., & Ghaderi, A. (2020b). The S-jump’s characteristics in the rough sudden expanding stilling basin. AUT Journal of Civil Engineering4(3), 349-356. https://doi.org/10.22060/ajce.2019.16427.5586.
Daneshfaraz, R., MajediAsl, M., Mirzaee, R., & Tayfur, G. (2021b). Hydraulic jump in a rough sudden symmetric expansion channel. AUT Journal of Civil Engineering5(2), 245-256. https://doi.org/10.22060/AJCE.2020.18227.5667.
Daneshfaraz, R., Sadeghfam, S., Aminvash, E., & Abraham, J. P. (2022). Experimental investigation of multiple supercritical flow states and the effect of hysteresis on the relative residual energy in sudden and gradual contractions. Iranian Journal of Science and Technology, Transactions of Civil Engineering46(5), 3843-3858. https://doi.org/10.1007/s40996-022-00818-9
Daneshfaraz, R., Sadeghı, H., Joudı, A. R., & Abraham, J. (2017). Experimental investigation of hydraulic jump characteristics in contractions and expansions. Sigma Journal of Engineering and Natural Sciences35(1), 87-98. https://sigma.yildiz.edu.tr/article/475
Daneshfaraz, R., Santos, C. A. G., Norouzi, R., Kashani, M. H., AmirRahmani, M., & Band, S. S. (2023). Prediction of drop relative energy dissipation based on Harris Hawks Optimization algorithm. Iranian Journal of Science and Technology, Transactions of Civil Engineering47(2), 1197-1210. https://doi.org/10.1007/s40996-022-00987-7
Ead, S. A., & Rajaratnam, N. (2002). Hydraulic jumps on corrugated beds. Journal of Hydraulic Engineering128(7), 656-663. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(656)
Ebrahimiyan, S., Hajikandi, H., Shafai Bejestan, M., Jamali, S., & Asadi, E. (2021). Numerical study on the effect of sediment concentration on jump characteristics in trapezoidal channels. Iranian Journal of Science and Technology, Transactions of Civil Engineering45, 1059-1075.  https://doi.org/10.1007/s40996-020-00510-w.
Elaswad, S., Saleh, O. K., & Elnikhili, E. (2022). Performance of Screen in a Sudden Expanding Stilling Basin under the Effect of the Submerged Hydraulic Jump. The Open Civil Engineering Journal16, 1-14. https://doi.org/10.2174/18741495-v16-e2201060.
Gul, E., Dursun, O. F., & Mohammadian, A. (2021). Experimental study and modeling of hydraulic jump for a suddenly expanding stilling basin using different hybrid algorithms. Water Supply21(7), 3752-3771. https://doi.org/10.2166/ws.2021.139.
Gupta, S. K., & Dwivedi, V. K. (2023). Prediction of depth ratio, jump length and energy loss in sloped channel hydraulic jump for environmental sustainability. Evergreen, 10 (2), 942-952. https://doi.org/10.5109/6792889
Gupta, S. K., & Dwivedi, V. K. (2024a). Effect of surface roughness and channel slope on hydraulic jump characteristics: an experimental approach towards sustainable environment. Iranian Journal of Science and Technology, Transactions of Civil Engineering48(3), 1695-1713. https://doi.org/10.1007/s40996-023-01246-z.
Gupta, S. K., & Dwivedi, V. K. (2024b). Experimental investigation of hydraulic jump characteristics in sloping rough surfaces for sustainable development. Engineering Research Express6(2), 025103. https://doi.org/10.1088/2631-8695/ad3acf
Gupta, S. K., Mehta, R. C., & Dwivedi, V. K. (2013). Modeling of relative length and relative energy loss of free hydraulic jump in horizontal prismatic channel. Procedia Engineering51, 529-537. https://doi.org/10.1016/j.proeng.2013.01.075
Hafnaoui, M. A., & Debabeche, M. (2023). Displacement of a hydraulic jump in a rectangular channel: experimental study. Iranian Journal of Science and Technology, Transactions of Civil Engineering47(2), 1181-1188. https://doi.org/10.1007/s40996-022-00974-y.
Hager, W. H., & Bremen, R. (1989). Classical hydraulic jump: sequent depths. Journal of Hydraulic Research27(5), 565-585. https://doi.org/10.1080/00221688909499111
Hamidinejad, A. E., Heidarpour, M., & Ghadampour, Z. (2023). Hydraulic jump control using stilling basin with abruptly expanding and negative step. Iranian Journal of Science and Technology, Transactions of Civil Engineering47(6), 3885-3894. https://doi.org/10.1007/s40996-023-01143-5.
Hasanabadi, H. N., Kavianpour, M. R., Khosrojerdi, A., & Babazadeh, H. (2023). Experimental study of natural bed roughness effect on hydraulic condition and energy dissipation over chutes. Iranian Journal of Science and Technology, Transactions of Civil Engineering47(3), 1709-1721. https://doi.org/10.1007/s40996-023-01060-7
Hassanpour, N., Hosseinzadeh Dalir, A., Farsadizadeh, D., & Gualtieri, C. (2017). An experimental study of hydraulic jump in a gradually expanding rectangular stilling basin with roughened bed. Water9(12), 945. https://doi.org/10.3390/w9120945
Herbrand, K. (1973). The spatial hydraulic jump. Journal of Hydraulic Research, 11 (3), 205-217. https://doi.org/10.1080/00221687309499774
Jan, C. D., & Chang, C. J. (2009). Hydraulic jumps in an inclined rectangular chute contraction. Journal of Hydraulic Engineering135(11), 949-958. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000100.
Kim, Y., Choi, G., Park, H., & Byeon, S. (2015). Hydraulic jump and energy dissipation with sluice gate. Water7(9), 5115-5133. https://doi.org/10.3390/w7095115
Kramer, M., & Valero, D. (2020). Turbulence and self-similarity in highly aerated shear flows: The stable hydraulic jump. International Journal of Multiphase Flow129, 103316. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103316.
Kucukali, S. E. R. H. A. T., & Cokgor, S. (2009). Energy concept for predicting hydraulic jump aeration efficiency. Journal of Environmental Engineering135(2), 105-107. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:2(105).
Maryami, E., Mohammadpour, R., Beirami, M. K., & Haghighi, A. T. (2021). Prediction of hydraulic jump characteristics in a closed conduit using numerical and analytical methods. Flow Measurement and Instrumentation82, 102071. https://doi.org/10.1016/j.flowmeasinst.2021.102071
Matin, M. A., Hasan, M., & Islam, M. A. (2008). Experiment on hydraulic jump in sudden expansion in a sloping rectangular channel. Journal of Civil Engineering (IEB)36(2), 65-77. https://www.jce-ieb.org/doc_file/3602001.pdf
McCorquodale, J. A., & Mohamed, M. S. (1994). Hydraulic jumps on adverse slopes. Journal of Hydraulic Research32(1), 119-130. https://doi.org/10.1080/00221689409498793
Mnassri, S., & Triki, A. (2023). An investigation of induced free-surface wave oscillations in prismatic open-channel. ISH Journal of Hydraulic Engineering29(5), 701-706. https://doi.org/10.1080/09715010.2022.2138587.
Mohammadzadeh-Habili, J., Heidarpour, M., & Samiee, S. (2018). Study of energy dissipation and downstream flow regime of labyrinth weirs. Iranian Journal of Science and Technology, Transactions of Civil Engineering42, 111-119. https://doi.org/10.1007/s40996-017-0088-6
Murzyn, F., & Chanson, H. (2008). Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps. Experiments in Fluids45, 513-521. https://doi.org/10.1007/s00348-008-0494-4
Omid, M. H., Esmaeeli Varaki, M., Narayanan, R., Zhang, J. M., Xu, W. L., Lin, P. Z., & Wang, W. (2009). Gradually expanding hydraulic jump in a trapezoidal channel. Journal of Hydraulic Research47(3), 396-398. https://doi.org/10.1080/00221686.2007.9521786
Parsaie, A., Haghiabi, A. H., Saneie, M., & Torabi, H. (2018). Prediction of energy dissipation of flow over stepped spillways using data-driven models. Iranian Journal of Science and Technology, Transactions of Civil Engineering42, 39-53. https://doi.org/10.1007/s40996-017-0060-5.
Peterka, A. J. (1958). Hydraulic design of stilling basins and energy dissipaters engineering monograph No. 25. US Bureau of Reclamation, Denver Colorado.
Pourabdollah, N., Heidarpour, M., Abedi Koupai, J., & Mohamadzadeh-Habili, J. (2022). Hydraulic jump control using stilling basin with adverse slope and positive step. ISH Journal of Hydraulic Engineering28(1), 10-17. https://doi.org/10.1080/09715010.2020.1812008
Rajaratnam, N., & Subramanya, K. (1968). Hydraulic jumps below abrupt symmetrical expansions. Journal of the Hydraulics Division94(2), 481-504. https://doi.org/10.1061/JYCEAJ.0001780.
Roushangar, K., & Homayounfar, F. (2019). Prediction characteristics of free and submerged hydraulic jumps on horizontal and sloping beds using SVM method. KSCE Journal of Civil Engineering23(11), 4696-4709. https://doi.org/10.1007/s12205-019-1070-6.
Sharoonizadeh, S., Ahadiyan, J., Fathi Moghadam, M., Sajjadi, M., & Di Bacco, M. (2022). Experimental investigation on the characteristics of hydraulic jump in expanding channels with a water jet injection system. Journal of Hydraulic Structures7(4), 58-75. https://doi.org/10.22055/JHS.2022.40233.1203
Torkamanzad, N., Hosseinzadeh Dalir, A., Salmasi, F., & Abbaspour, A. (2019). Hydraulic jump below abrupt asymmetric expanding stilling basin on rough bed. Water11(9), 1756. https://doi.org/10.3390/w11091756.
Varaki, M. E., Kasi, A., Farhoudi, J., & Sen, D. (2014). Hydraulic jump in a diverging channel with an adverse slope. Iranian Journal of Science and Technology. Transactions of Civil Engineering38(C1), 111. https://doi.org/10.22099/IJSTC.2014.1848.
Wang, W., Baayoun, A., & Khayat, R. E. (2023). A coherent composite approach for the continuous circular hydraulic jump and vortex structure. Journal of Fluid Mechanics966, A15. https://doi.org/10.1017/jfm.2023.374
Welahettige, P., Lie, B., & Vaagsaether, K. (2017). Flow regime changes at hydraulic jumps in an open Venturi channel for Newtonian fluid. The Journal of Computational Multiphase Flows9(4), 169-179. https://doi.org/10.1177/1757482X17722890
Zhang, J., Zhang, Q., Wang, T., Li, S., Diao, Y., Cheng, M., & Baruch, J. (2017). Experimental study on the effect of an expanding conjunction between a spilling basin and the downstream channel on the height after jump. Arabian Journal for Science and Engineering42, 4069-4078. https://doi.org/10.1007/s13369-017-2568-1.