Asadi Dereshgi, H., Yildiz, M. Z., & Parlak, N. (2020). Performance comparison of novel single and bi-diaphragm PZT based valveless micropumps.
Journal of Applied Fluid Mechanics,
13(2), 401-412.
https://doi.org/10.29252/jafm.13.02.30347
Bayazidi, S., Mojaddam, M., & Mohseni, A. (2023). Performance optimization of nozzle-diffuser piezoelectric micropump with multiple vibrating membranes by design of experiment (DOE) method.
Journal of Applied Fluid Mechanics,
16(7), 1356-1370.
https://doi.org/10.47176/jafm.16.07.1539
Bui, G. T., Wang, J. H., & Lin, J. L. (2017). Optimization of micropump performance utilizing a single membrane with an active check valve.
Micromachines,
9(1), 1.
https://doi.org/10.3390/mi9010001
Bußmann, A., Leistner, H., Zhou, D., Wackerle, M., Congar, Y., Richter, M., & Hubbuch, J. (2021). Piezoelectric silicon micropump for drug delivery applications.
Applied Sciences,
11(17), 8008.
https://doi.org/10.3390/app11178008
Carrozza, M. C., Croce, N., Magnani, B., & Dario, P. (1995). A piezoelectric-driven stereolithography-fabricated micropump.
Journal of Micromechanics and Microengineering,
5(2), 177.
https://doi.org/10.1088/0960-1317/5/2/032
Cazorla, P. H., Fuchs, O., Cochet, M., Maubert, S., Le Rhun, G., Fouillet, Y., & Defay, E. (2016). A low voltage silicon micro-pump based on piezoelectric thin films.
Sensors and Actuators A: Physical,
250, 35-39.
https://doi.org/10.1016/j.sna.2016.09.012
Cui, Q., Liu, C., & Zha, X. F. (2008). Simulation and optimization of a piezoelectric micropump for medical applications.
The International Journal of Advanced Manufacturing Technology,
36, 516-524.
https://doi.org/10.1007/s00170-006-0867-x
Dau, V. T., & Dinh, T. X. (2015). Numerical study and experimental validation of a valveless piezoelectric air blower for fluidic applications.
Sensors and Actuators B: Chemical,
221, 1077-1083.
https://doi.org/10.1016/j.snb.2015.07.041
Dong, J. S., Chen, W. H., Zeng, P., Liu, R. G., Shen, C., Liu, W. S., & Lin, B. S. (2017a). Design and experimental research on piezoelectric pump with triple vibrators. Microsystem Technologies, 23, 3019- 3026.
https://doi.org/10.1007/s00542-016-3029-6
Dong, J. S., Liu, R. G., Liu, W. S., Chen, Q. Q., Yang, Y., Wu, Y., & Lin, B. S. (2017b). Design of a piezoelectric pump with dual vibrators. Sensors and Actuators A: Physical, 257, 165-172.
https://doi.org/10.1016/j.sna.2017.02.001
Gidde, R. R., Pawar, P. M., & Dhamgaye, V. P. (2020). Fully coupled modeling and design of a piezoelectric actuation based valveless micropump for drug delivery application.
Microsystem Technologies,
26(2), 633-645.
https://doi.org/10.1007/s00542-019-04535-8
Johari, J., & Majlis, B. Y. (2008, November).
Flow behaviour of fluid-structure interaction (FSI) system of piezoelectric actuated valveless micropump (PAVM). 2008 IEEE International Conference on Semiconductor Electronics (pp. 216-220). IEEE.
https://doi.org/10.1109/SMELEC.2008.4770311
Kaçar, A., Özer, M. B., & Taşcıoğlu, Y. (2020). A novel artificial pancreas: Energy efficient valveless piezoelectric actuated closed-loop insulin pump for T1DM.
Applied Sciences,
10(15), 5294.
https://doi.org/10.3390/app10155294
Kang, J., & Auner, G. W. (2011). Simulation and verification of a piezoelectrically actuated diaphragm for check valve micropump design.
Sensors and Actuators A: Physical,
167(2), 512-516.
https://doi.org/10.1016/j.sna.2011.01.012
Kaviani, S., Bahrami, M., Esfahani, A. M., & Parsi, B. (2014). A modeling and vibration analysis of a piezoelectric micro-pump diaphragm.
Comptes Rendus Mécanique,
342(12), 692-699.
https://doi.org/10.1016/j.crme.2014.06.005
Lee, D. G., Or, S. W., & Carman, G. P. (2004). Design of a piezoelectric-hydraulic pump with active valves.
Journal of Intelligent Material Systems and Structures,
15(2), 107-115.
https://doi.org/10.1177/1045389X04039730
Liu, C., Zhu, Y., & Wu, C. (2020). Optimization of a synthetic jet based piezoelectric air pump and its application in electronic cooling.
Microsystem Technologies,
26, 1905-1914.
https://doi.org/10.1007/s00542-019-04743-2
Liu, G., Shen, C., Yang, Z., Cai, X., & Zhang, H. (2010). A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system.
Sensors and Actuators A: Physical,
163(1), 291-296.
https://doi.org/10.1016/j.sna.2010.06.030
Lu, S., Yu, M., Qian, C., Deng, F., Chen, S., Kan, J., & Zhang, Z. (2020). A quintuple-bimorph tenfold-chamber piezoelectric pump used in water-cooling system of electronic chip.
Ieee Access,
8, 186691-186698.
https://doi.org/10.1109/ACCESS.2020.3030247
Ni, J., Xuan, W., Li, Y., Chen, J., Li, W., Cao, Z., & Luo, J. (2023). Analytical and experimental study of a valveless piezoelectric micropump with high flowrate and pressure load.
Microsystems & Nanoengineering,
9(1), 72.
https://doi.org/10.1038/s41378-023-00547-7
Sakuma, S., Kasai, Y., Hayakawa, T., & Arai, F. (2017). On-chip cell sorting by high-speed local-flow control using dual membrane pumps.
Lab on a Chip,
17(16), 2760-2767.
https://doi.org/10.1039/C7LC00536A
Sayar, E., & Farouk, B. (2012). Multifield analysis of a piezoelectric valveless micropump: effects of actuation frequency and electric potential.
Smart Materials and Structures,
21(7), 075002.
http://dx.doi.org/10.1088/0964-1726/21/7/075002
Singh, S., Kumar, N., George, D., & Sen, A. K. (2015). Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump.
Sensors and Actuators A: Physical,
225, 81-94.
https://doi.org/10.1016/j.sna.2015.02.012
Takaddus, A. T., & Chandy, A. J. (2018). A three‐dimensional (3D) two‐way coupled fluid‐structure interaction (FSI) study of peristaltic flow in obstructed ureters.
International Journal for Numerical Methods in Biomedical Engineering,
34(10), e3122.
https://doi.org/10.1002/cnm.3122
Vante, A. B., & Kanish, T. C. (2024). Fluid-structure interaction and experimental studies of passive check valve based piezoelectric micropump for biomedical applications.
Advances in Materials and Processing Technologies,
10(3), 2095-2121.
https://doi.org/10.1080/2374068X.2023.2206176
Wang, L., Chen, W., Liu, J., Deng, J., & Liu, Y. (2019). A review of recent studies on non-resonant piezoelectric actuators.
Mechanical Systems and Signal Processing,
133, 106254.
https://doi.org/10.1016/j.ymssp.2019.106254
Yang, X., Zhou, Z., Cho, H., & Luo, X. (2006). Study on a PZT-actuated diaphragm pump for air supply for micro fuel cells.
Sensors and Actuators A: Physical,
130, 531-536.
https://doi.org/10.1016/j.sna.2005.12.021
Zeng, P., Li, L. A., Dong, J., Cheng, G., Kan, J., & Xu, F. (2016). Structure design and experimental study on single-bimorph double-acting check-valve piezoelectric pump.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
230(14), 2339-2344.
https://doi.org/10.1177/0954406215596357
Zhang, W., & Eitel, R. E. (2013). An integrated multilayer ceramic piezoelectric micropump for microfluidic systems.
Journal of Intelligent Material Systems and Structures,
24(13), 1637-1646.
https://doi.org/10.1177/1045389X13483023
Zhao, D., He, L. P., Li, W., Huang, Y., & Cheng, G. M. (2019). Experimental analysis of a valve-less piezoelectric micropump with crescent-shaped structure.
Journal of Micromechanics and Microengineering,
29(10), 105004.
https://doi.org/10.1088/1361-6439/ab3278