Numerical Analysis of Fluid‒solid Interactions in a 3D Piezoelectric Micropump Featuring a Passive Check Valve

Document Type : Regular Article

Authors

School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China

10.47176/jafm.18.7.3164

Abstract

Piezoelectric micropumps have attracted considerable research attention due to their low production cost, compact size, and controllable output performance. However, the fluid-structure interaction mechanisms in passive check valve-based piezoelectric micropumps remain insufficiently understood, leading to gaps in the current understanding of how their flow characteristics influence overall performance. This study addresses these gaps by establishing a flow model for a typical cantilever valve piezoelectric micropump, considering the effects of fluid-structure interaction. Numerical simulations were performed to investigate the flow field, pressure distribution within the pump chamber, and the dynamic behavior of the check valve during operation. The simulations revealed that the mechanical inertia of the valve causes its opening to lag behind the fluid pressure wave propagation, leading to a phase difference between the piezoelectric actuator and the valve. This delay results in transient backflow during the valve's state transition, which negatively impacts the micropump's overall performance by reducing efficiency. Furthermore, the influences of valve dimensions, pump chamber size, piezoelectric actuator size, as well as external driving voltage and frequency on the pump's operational characteristics were systematically analyzed and optimized. Following the optimization process, the micropump's output flow rate increased to 34.02 mL/min, representing a 54.54% improvement over its initial design, demonstrating the substantial performance gains achieved through structural refinement.

Keywords

Main Subjects


Asadi Dereshgi, H., Yildiz, M. Z., & Parlak, N. (2020). Performance comparison of novel single and bi-diaphragm PZT based valveless micropumps. Journal of Applied Fluid Mechanics13(2), 401-412. https://doi.org/10.29252/jafm.13.02.30347
Bayazidi, S., Mojaddam, M., & Mohseni, A. (2023). Performance optimization of nozzle-diffuser piezoelectric micropump with multiple vibrating membranes by design of experiment (DOE) method. Journal of Applied Fluid Mechanics16(7), 1356-1370. https://doi.org/10.47176/jafm.16.07.1539
Bui, G. T., Wang, J. H., & Lin, J. L. (2017). Optimization of micropump performance utilizing a single membrane with an active check valve. Micromachines9(1), 1. https://doi.org/10.3390/mi9010001
Bußmann, A., Leistner, H., Zhou, D., Wackerle, M., Congar, Y., Richter, M., & Hubbuch, J. (2021). Piezoelectric silicon micropump for drug delivery applications. Applied Sciences11(17), 8008. https://doi.org/10.3390/app11178008
Carrozza, M. C., Croce, N., Magnani, B., & Dario, P. (1995). A piezoelectric-driven stereolithography-fabricated micropump. Journal of Micromechanics and Microengineering5(2), 177.  https://doi.org/10.1088/0960-1317/5/2/032
Cazorla, P. H., Fuchs, O., Cochet, M., Maubert, S., Le Rhun, G., Fouillet, Y., & Defay, E. (2016). A low voltage silicon micro-pump based on piezoelectric thin films. Sensors and Actuators A: Physical250, 35-39. https://doi.org/10.1016/j.sna.2016.09.012
Cui, Q., Liu, C., & Zha, X. F. (2008). Simulation and optimization of a piezoelectric micropump for medical applications. The International Journal of Advanced Manufacturing Technology36, 516-524. https://doi.org/10.1007/s00170-006-0867-x
Dau, V. T., & Dinh, T. X. (2015). Numerical study and experimental validation of a valveless piezoelectric air blower for fluidic applications. Sensors and Actuators B: Chemical221, 1077-1083. https://doi.org/10.1016/j.snb.2015.07.041
Dong, J. S., Chen, W. H., Zeng, P., Liu, R. G., Shen, C., Liu, W. S., & Lin, B. S. (2017a). Design and experimental research on piezoelectric pump with triple vibrators. Microsystem Technologies, 23, 3019- 3026. https://doi.org/10.1007/s00542-016-3029-6
Dong, J. S., Liu, R. G., Liu, W. S., Chen, Q. Q., Yang, Y., Wu, Y., & Lin, B. S. (2017b). Design of a piezoelectric pump with dual vibrators. Sensors and Actuators A: Physical, 257, 165-172. https://doi.org/10.1016/j.sna.2017.02.001
Gidde, R. R., Pawar, P. M., & Dhamgaye, V. P. (2020). Fully coupled modeling and design of a piezoelectric actuation based valveless micropump for drug delivery application. Microsystem Technologies26(2), 633-645. https://doi.org/10.1007/s00542-019-04535-8
Jenke, C., Kager, S., Richter, M., & Kutter, C. (2018). Flow rate influencing effects of micropumps. Sensors and Actuators A: Physical, 276, 335-345. https://doi.org/10.1016/j.sna.2018.04.025
Johari, J., & Majlis, B. Y. (2008, November). Flow behaviour of fluid-structure interaction (FSI) system of piezoelectric actuated valveless micropump (PAVM). 2008 IEEE International Conference on Semiconductor Electronics (pp. 216-220). IEEE. https://doi.org/10.1109/SMELEC.2008.4770311
Kaçar, A., Özer, M. B., & Taşcıoğlu, Y. (2020). A novel artificial pancreas: Energy efficient valveless piezoelectric actuated closed-loop insulin pump for T1DM. Applied Sciences, 10(15), 5294. https://doi.org/10.3390/app10155294
Kang, J., & Auner, G. W. (2011). Simulation and verification of a piezoelectrically actuated diaphragm for check valve micropump design. Sensors and Actuators A: Physical167(2), 512-516. https://doi.org/10.1016/j.sna.2011.01.012
Kaviani, S., Bahrami, M., Esfahani, A. M., & Parsi, B. (2014). A modeling and vibration analysis of a piezoelectric micro-pump diaphragm. Comptes Rendus Mécanique342(12), 692-699. https://doi.org/10.1016/j.crme.2014.06.005
Lee, D. G., Or, S. W., & Carman, G. P. (2004). Design of a piezoelectric-hydraulic pump with active valves. Journal of Intelligent Material Systems and Structures15(2), 107-115. https://doi.org/10.1177/1045389X04039730
Li, H., Liu, J., Li, K., & Liu, Y. (2019). Piezoelectric micro-jet devices: A review. Sensors and Actuators A: Physical297, 111552. https://doi.org/10.1016/j.sna.2019.111552
Liu, C., Zhu, Y., & Wu, C. (2020). Optimization of a synthetic jet based piezoelectric air pump and its application in electronic cooling. Microsystem Technologies26, 1905-1914. https://doi.org/10.1007/s00542-019-04743-2
Liu, G., Shen, C., Yang, Z., Cai, X., & Zhang, H. (2010). A disposable piezoelectric micropump with high performance for closed-loop insulin therapy system. Sensors and Actuators A: Physical163(1), 291-296. https://doi.org/10.1016/j.sna.2010.06.030
Lu, S., Yu, M., Qian, C., Deng, F., Chen, S., Kan, J., & Zhang, Z. (2020). A quintuple-bimorph tenfold-chamber piezoelectric pump used in water-cooling system of electronic chip. Ieee Access8, 186691-186698. https://doi.org/10.1109/ACCESS.2020.3030247
Mohith, S., Karanth, P. N., & Kulkarni, S. M. (2019). Recent trends in mechanical micropumps and their applications: A review. Mechatronics60, 34-55. https://doi.org/10.1016/j.mechatronics.2019.04.009
Ni, J., Xuan, W., Li, Y., Chen, J., Li, W., Cao, Z., & Luo, J. (2023). Analytical and experimental study of a valveless piezoelectric micropump with high flowrate and pressure load. Microsystems & Nanoengineering9(1), 72. https://doi.org/10.1038/s41378-023-00547-7
Sakuma, S., Kasai, Y., Hayakawa, T., & Arai, F. (2017). On-chip cell sorting by high-speed local-flow control using dual membrane pumps. Lab on a Chip17(16), 2760-2767. https://doi.org/10.1039/C7LC00536A
Sayar, E., & Farouk, B. (2012). Multifield analysis of a piezoelectric valveless micropump: effects of actuation frequency and electric potential. Smart Materials and Structures21(7), 075002. http://dx.doi.org/10.1088/0964-1726/21/7/075002
Senjanović, I., Vladimir, N., & Tomić, M. (2016). On new first-order shear deformation plate theories. Mechanics Research Communications73, 31-38. https://doi.org/10.1016/j.mechrescom.2016.02.005
Singh, S., Kumar, N., George, D., & Sen, A. K. (2015). Analytical modeling, simulations and experimental studies of a PZT actuated planar valveless PDMS micropump. Sensors and Actuators A: Physical225, 81-94. https://doi.org/10.1016/j.sna.2015.02.012
Takaddus, A. T., & Chandy, A. J. (2018). A three‐dimensional (3D) two‐way coupled fluid‐structure interaction (FSI) study of peristaltic flow in obstructed ureters. International Journal for Numerical Methods in Biomedical Engineering34(10), e3122.  https://doi.org/10.1002/cnm.3122
Vante, A. B., & Kanish, T. C. (2024). Fluid-structure interaction and experimental studies of passive check valve based piezoelectric micropump for biomedical applications. Advances in Materials and Processing Technologies10(3), 2095-2121. https://doi.org/10.1080/2374068X.2023.2206176
Wang, B., Chu, X., Li, E., & Li, L. (2006). Simulations and analysis of a piezoelectric micropump. Ultrasonics44, e643-e646. https://doi.org/10.1016/j.ultras.2006.05.018
Wang, L., Chen, W., Liu, J., Deng, J., & Liu, Y. (2019). A review of recent studies on non-resonant piezoelectric actuators. Mechanical Systems and Signal Processing133, 106254. https://doi.org/10.1016/j.ymssp.2019.106254
Wang, Y. N., & Fu, L. M. (2018). Micropumps and biomedical applications–A review. Microelectronic Engineering195, 121-138. https://doi.org/10.1016/j.mee.2018.04.008
Yang, X., Zhou, Z., Cho, H., & Luo, X. (2006). Study on a PZT-actuated diaphragm pump for air supply for micro fuel cells. Sensors and Actuators A: Physical130, 531-536. https://doi.org/10.1016/j.sna.2005.12.021
Yeming, S., & Junyao, W. (2019). Digitally-controlled driving power supply for dual-active-valve piezoelectric pump. Microsystem Technologies25(4), 1257-1265. https://doi.org/10.1007/s00542-018-4101-1
Zeng, P., Li, L. A., Dong, J., Cheng, G., Kan, J., & Xu, F. (2016). Structure design and experimental study on single-bimorph double-acting check-valve piezoelectric pump. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science230(14), 2339-2344. https://doi.org/10.1177/0954406215596357
Zhang, W., & Eitel, R. E. (2013). An integrated multilayer ceramic piezoelectric micropump for microfluidic systems. Journal of Intelligent Material Systems and Structures24(13), 1637-1646. https://doi.org/10.1177/1045389X13483023
Zhao, D., He, L. P., Li, W., Huang, Y., & Cheng, G. M. (2019). Experimental analysis of a valve-less piezoelectric micropump with crescent-shaped structure. Journal of Micromechanics and Microengineering29(10), 105004. https://doi.org/10.1088/1361-6439/ab3278