Analysis of Sealing Performance and Mechanism of Biomimetic Superoleophobic Surface Structure

Document Type : Regular Article

Authors

School of Mechanical and Vehicular Engineering, Changchun University, Changchun 130022, China

10.47176/jafm.18.7.3144

Abstract

Sealing performance is critical for mechanical components, particularly in automotive engines, where oil leaks remain a persistent challenge. This paper presents the design of novel biomimetic sealing surfaces that replicate the structural characteristics of biological surfaces with superhydrophobic and superoleophobic properties. A comprehensive evaluation of the design and performance of these biomimetic surfaces is provided. A multilayer microarray structure was designed using multivariate coupled mimetic theory. The structure consists of a smooth surface, a primary biomimetic weave surface, and a secondary biomimetic weave surface. Biomimetic superoleophobic surfaces of varying grades were fabricated on automobile engine gaskets through machining. This paper analyzes the dispersion of oil droplets, impact dynamics, and contact time between different surface structures using Volume of Fluid (VOF), Coupled Level Set and Liquid Volume (CLSVOF), and Computational Fluid Dynamics (CFD). The results demonstrate that the biomimetic textured surface significantly enhances oleophobicity by minimizing contact with oil droplets, reducing the maximum diffusion diameter by approximately 15% compared to a smooth surface. The interaction duration of oil droplets on the biomimetic surface is reduced by 14.7%, leading to improved sealing efficiency. This study indicates that finely structured biomimetic surfaces have promising applications in automotive sealing technology. Further miniaturization and optimization of these structures are expected to enhance sealing efficiency, particularly in demanding industrial environments. 

Keywords

Main Subjects


Baggio, M., & Weigand, B. (2019). Numerical simulation of a drop impact on a superhydrophobic surface with a wire. Physics of Fluids 31(11). http://doi.org/10.1063/1.5123593
Barthlott, W., Mail, M., Bhushan, B., & Koch, K. (2017). Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Letters, 9, 1-40. http://doi.org/10.1007/s40820-016-0125-1
Chila, R. J., & Kaminski, D. A. (2008). Grid Independence via automated unstructured adaptation. of Fluids Engineering, 121403. http://doi.org/10.1115/1.3001099
Ding, W., Fernandino, M., & Dorao, C. A. (2019). Conical micro-structures as a route for achieving super-repellency in surfaces with intrinsic hydrophobic properties. Applied Physics Letters, 115(5). http://doi.org/10.1063/1.5096776
Dodson, R. F., & Hammar, S. P. (2005). Asbestos: risk assessment, epidemiology, and health effects. CRC Press. https://doi.org/10.1201/9781420038149
Dong, L., Li, K., Zhu, X., Li, Z., Zhang, D., Pan, Y., & Chen, X. (2020). Study on high temperature sealing behavior of packer rubber tube based on thermal aging experiments. Engineering Failure Analysis, 108, 104321. http://doi.org/10.1016/j.engfailanal.2019.104321
Farfán-Cabrera, L. I., Pérez-González, J., & Gallardo-Hernández, E. A. (2018). Deterioration of seals of automotive fuel systems upon exposure to straight Jatropha oil and diesel. Renewable Energy, 127, 125-133. https://doi.org/10.1016/j.renene.2018.04.048
Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L. (2008). Petal effect: a superhydrophobic state with high adhesive force. Langmuir, 24(8), 4114-4119. http://doi.org/10.1021/la703821h
Gao, S. R., Jin, J. X., Wei, B. J., Lin, D. J., Wang, X., Zhang, L. Z., Yang, Y. R., & Wang, X. D. (2021). Dynamic behaviors of two droplets impacting an inclined superhydrophobic substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 623, 126725. http://doi.org/10.1016/J.COLSURFA.2021.126725
Gauthier, A., Symon, S., Clanet, C., & Quéré, D. (2015). Water impacting on superhydrophobic macrotextures. Nature Communications, 6(1), 8001. http://doi.org/10.1038/ncomms9001
Gose, J. W., Golovin, K., Boban, M., Mabry, J. M., Tuteja, A., Perlin, M., & Ceccio, S. L. (2018). Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. Journal of Fluid Mechanics, 845, 560-580. http://doi.org/10.1017/jfm.2018.210
Guo, Z., & Liu, W. (2007). Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Science, 172, 1103-1112. http://doi.org/10.1016/j.plantsci.2007.03.005
Huang, Q., Zhang, Y., & Pan, G. (2016). Dynamic behaviors and energy transition mechanism of droplets impacting on hydrophobic surfaces. Discrete Dynamics in Nature and Society, 2016, 1-9. https://doi.org/10.1155/2016/8517309
Jia, W., Li, M., Weng, H., Gu, G., & Chen, Z. (2020). Design and comprehensive assessment of a biomimetic tri-layer tubular scaffold via biodegradable polymers for vascular tissue engineering applications. Materials Science and Engineering: C, 110, 110717. http://doi.org/10.1016/j.msec.2020.110717
Jiang, S., Guo, Z., Gyimah, G. K., Zhang, C., & Liu, G. (2018). Preparation of biomimetic superhydrophobic surface by a facile one-step pulse electrodeposition. Procedia CIRP, 68, 237-241. http://doi.org/10.1016/j.procir.2017.12.055
Li, J., Yang, K., Liang, Y., & Liu, C. (2022). Hydrodynamic analysis of the energy dissipation of droplets on vibrating superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 137, 106264. https://doi.org/10.1016/j.icheatmasstransfer.2022.106264
Li, Z., Hu, R., Song, J., Liu, L., Qu, J., Song, W., Cao, C. (2021). Gas–liquid–solid triphase interfacial chemical reactions associated with gas wettability. Advanced Materials Interfaces, 8(6), 2001636. http://doi.org/10.1002/ADMI.202001636
Liang, Y. H., Peng, J., Li, X. J., Xu, J. K., Zhang, Z. H., & Ren, L. Q. (2016). From natural to biomimetic: The superhydrophobicity and the contact time. Microscopy Research and Technique, 79(8), 712-720. http://doi.org/10.1002/jemt.22689
Lin, D. J., Zhang, L. Z., Yi, M. C., Wang, X., Gao, S. R., Yang, Y. R., Zheng, S. F., & Wang, X. D. (2020).  Contact time of double-droplet impacting superhydrophobic surfaces with different macrotextures. Processes, 8(8), 896. http://doi.org/10.3390/pr8080896
Liu, C., Liu, Q., & Lin, Z. (2020). Dynamical behavior of droplets transiently impacting on superhydrophobic microstructures. Physics of Fluids, 32(10). http://doi.org/10.1063/5.0024400
Luo, W., Yu, B., Xiao, D., Zhang, M., Wu, X., & Li, G. (2018). Biomimetic superhydrophobic hollowed-out pyramid surface based on self-assembly. Mater, 11(5), 813. http://doi.org/10.3390/ma11050813
Marengo, M., Antonini, C., Roisman, I. V., & Tropea, C. (2011). Drop collisions with simple and complex surfaces. Current Opinion in Colloid & Interface Science, 16(4), 292-302. http://doi.org/10.1016/j.cocis.2011.06.009
Nagashima, T., & Sawada, M. (2016). Development of a damage propagation analysis system based on level set XFEM using the cohesive zone model. Computers & Structures, 174, 42-53. http://doi.org/10.1016/j.compstruc.2015.10.005
Nekouei, M., & Vanapalli, S. A. (2017). Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size. Physics of Fluids, 29(3). http://doi.org/10.1063/1.4978801
Serevina, V., & Meyputri, C. U. (2021, September.3–4). Development of blended learning based on website on fluid mechanic material to improve students’ creative thinking skills. IOP Publishing 2020, Journal of Physics: Conference Series. http://doi.org/10.1088/1742-6596/1876/1/012070
Talebanfard, N., Nemati, H., & Boersma, B. J. (2019). Heat transfer in deforming droplets with a direct solver for a coupled level-set and volume of fluid method. International Communications in Heat and Mass Transfer, 108, 104272. http://doi.org/10.1016/j.icheatmasstransfer.2019.104272
Vander Veen, R. C. A., Hendrix, M. H. W., Tran, T., Sun, C., Tsai, P. A., & Lohse, D. (2014). How microstructures affect air film dynamics prior to drop impact. Soft Matter, 10(21), 3703-3707. http://doi.org/10.1039/c4sm00298a
Walters, D. K., & Wolgemuth, N. M. (2009). A new interface‐capturing discretization scheme for numerical solution of the volume fraction equation in two–phase flows. International Journal for Numerical Methods in Fluids, 60(8), 893-918. http://doi.org/10.1002/fld.1924
Wang, G., Liang, W., Wang, B., Zhang, Y., Li, J., Shi, L., & Guo, Z. (2013). Conductive and transparent superhydrophobic films on various substrates by in situ deposition. Applied Physics Letters, 102(20). http://doi.org/10.1063/1.4807472
Wang, B., Liang, W., Guo, Z., & Liu, W. (2015). Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem. Soc. Rev, 44(1), 336-361. http://doi.org/10.1039/c4cs00220b
Wang, Y., Wang, Q., Wang, B., Tian, Y., Di, J., Wang, Z., Jiang, L., & Yu, J. (2021). Modulation of solid surface with desirable under-liquid wettability based on molecular hydrophilic–lipophilic balance. Chemical Science, 12(17), 6136-6142. https://doi.org/10.1039/d1sc00808k
Wu, J., Ma, R., Wang, Z., & Yao, S. (2011). Do droplets always move following the wettability gradient? Applied Physics Letters 98(20). https://doi.org/10.1063/1.3592997
Wu, L., Gong, M., & Wang, J. (2018). Development of a DEM–VOF model for the turbulent free-surface flows with particles and its application to stirred mixing system. Industrial & Engineering Chemistry Research, 57(5), 1714-1725. http://doi.org/10.1021/acs.iecr.7b04833
Yarin, A. L. (2006). Drop impact dynamics: Splashing, spreading, receding, bouncing. Annual Review of Fluid Mechanics, 38, 159-192. https://doi.org/ 10.1146/annurev.fluid.38.050304.092144
Zhang, G. L., Zhang, W. J., Li, H. L., Cao, W. Z., Wang, B. D., Guo, W. S., & Guo, P. (2021). Waterproofing behavior of sealing gaskets for circumferential joints in shield tunnels: A full-scale experimental investigation. Tunnelling and Underground Space Technology, 108, 103682. http://doi.org/10.1016/j.tust.2020.103682
Zhang, J., & Hu, Y. (2020). Sealing performance and mechanical behavior of PEMFCs sealing system based on thermodynamic coupling. International Journal of Hydrogen Energy, 45(43), 23480–23489. https://doi.org/10.1016/j.ijhydene.2020.06.167
Zhang, X., Liu, X., Wu, X., & Min, J. (2020). Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion. International Journal of Heat and Mass Transfer, 158, 119997. http://doi.org/10.1016/j.ijheatmasstransfer.2020.119997
Zhao, C., Montazeri, K., Shao, B., & Won, Y. (2021). Mapping between surface wettability, droplets, and their impacting behaviors. Langmuir, 37(33), 9964-9972. http://doi.org/10.1021/acs.langmuir.1c00879