Effect of Triangular Lip Wall on the Performance of a Stationary Oscillating Water Column Device at Various Wave Conditions Using Reynolds-averaged Navier-Stokes (RANS) Model

Document Type : Regular Article

Authors

Department of Mechanical Engineering, NIT, Silchar, Assam - 788 010, India

10.47176/jafm.18.8.3264

Abstract

One of the most inexhaustible forms of energy is the ocean wave. The conversion of this energy into a useful form of electrical energy is possible by a device of oscillating water column (OWC). This work aims to numerically analyse the effect of the triangular lip wall of the OWC wave energy converter on the hydrodynamic efficiency at different wave steepness conditions (Hi), orifice ratios (ε), and relative openings (σ). This analysis uses commercial computational fluid dynamics (CFD) code ANSYS FLUENT software in a 3D numerical wave tank. The governing equations are discretized using FVM formulation, and the k-ε turbulence model is used. The inlet velocity method is used to generate the waves. The model was validated and verified with the experimental model published by Çelik and Altunkaynak (2019) and implemented for further improvement. The hydrodynamic efficiency (Eff) of the new model increases with relative openings increases and also increases with the decreases in wave steepness. This study shows an optimum efficiency of 76.30% at ε4 = 1.03%, σ =75%, and Hi = 0.02. The information obtained from this numerical investigation of a new model is a highly relevant source, and it provides foresight in the design of the OWC wave energy converter.

Keywords

Main Subjects


Ashlin, S. J., Sundar, V., & Sannasiraj, S. A. (2016). Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics. Renewable Energy, 96, 341-353. https://doi.org/10.1016/j.renene.2016.04.091
Bouali, B., & Larbi, S. (2013). Contribution to the geometry optimisation of an oscillating water column wave energy converter. Energy Procedia, 36, 565-573. https://doi.org/10.1016/j.egypro.2013.07.065
Brito, M., Ferreira, R. M. L., Teixeira, L., Neves, M. G., & Gil, L. (2020) Experimental investigation of the flow field in the vicinity of an oscillating wave surge converter. Journal of Marine Science and Engineering 8(976), 1-18. https://doi.org/10.3390/jmse8120976  
Carlo, L., Iuppa, L., & Faraci, C. (2023) A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter. Renewable Energy, 203, 89–101. https://doi.org/10.1016/j.renene.2022.12.057
Çelik, A., & Altunkaynak, A. (2018). Experimental and analytical investigation on chamber water surface fluctuations and motion behaviours of water column type wave energy converter. Ocean Engineering, 150, 209–220. https://doi.org/10.1016/j.oceaneng.2017.12.065
Çelik, A., & Altunkaynak, A. (2019). Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter. Energy, 188, 116071. https://doi.org/10.1016/j.energy.2019.116071
Çelik, A., & Altunkaynak, A. (2020). Estimation of water column surface displacement of a fixed oscillating water column by simple mechanical model with determination of hydrodynamic parameters via physical experimental model. Journal of Waterway, Port, Coastal, and Ocean Engineering, 146(5), 04020030. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000593
Çelik, A., & Altunkaynak, A. (2021). An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber. Energy, 230, 120827. https://doi.org/10.1016/j.energy.2021.120827
Çelik, A., (2022). An experimental investigation into the effects of front wall geometry on OWC performance for various levels of applied power take-off dampings. Ocean Engineering, 248, 110761. https://doi.org/10.1016/j.oceaneng.2022.110761
Cruz-Pérez, N., Alcántara, J. S. R.,  Koronaiou, V. L. P., Jančula, A., Martín, J. R., García-Gil, A., Fontes, J. C., & Santamarta, J. C. (2024). SWOT analysis of the benefits of hydropower energy in four archipelagos. Civil Engineering Journal (E-ISSN: 2476-3055; ISSN: 2676-6957), 10(07), 2370-2383. http://dx.doi.org/10.28991/CEJ-2024-010-07-019
Dizadji, N., & Sajadian, S. E. (2011). Modeling and optimization of the chamber of OWC system. Energy, 36(5), 2360-2366. https://doi.org/10.1016/j.energy.2011.01.010
Falcão, A. F., & Henriques, J. C. (2016). Oscillating-water-column wave energy converters and air turbines: A review. Renewable Energy, 85, 1391-1424. https://doi.org/10.1016/j.renene.2015.07.086
Gonçalves, R. A. A. C., Teixeira, P. R. F., Didier, E., & Torres, F. R. (2020). Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber. Renewable Energy, 153, 1183-1193. https://doi.org/10.1016/j.renene.2020.02.080
Gouaud, F., Rey, V., Piazzola, J., & Van Hooff, R. (2010). Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound. Coastal Engineering, 57(11-12), 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
Hotta, H., Miyazaki, T., Washio, Y., & Ishii, S. (1988). On the performance of the wave power device Kaimei—the results on the open sea tests. Proceedings of the Seventh International Conference on Offshore Mechanics and Arctic Engineering, Houston, TX, USA.
Iturrioz, A., Guanche, R., Lara, J. L., Vidal, C., & Losada, I. J. (2015). Validation of OpenFOAM® for oscillating water column three-dimensional modeling. Ocean Engineering, 107, 222-236. https://doi.org/10.1016/j.oceaneng.2015.07.051
Launder, B. E. (1989). Second-moment closure and its use in modelling turbulent industrial flows. International Journal for Numerical Methods in Fluids, 9, 963-985. https://doi.org/10.1002/fld.1650090806
Liu, Z., Hyun, B., Jin, J., Hong, K., & Lee, Y. (2016). OWC air chamber performance prediction under impulse turbine damping effects. Science China Technological Sciences, 59, 657-666. https://doi.org/10.1007/s11431-016-6030-5
López, I., Pereiras, B., Castro, F., & Iglesias, G. (2014). Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model. Applied Energy, 127, 105-114. https://doi.org/10.1016/j.apenergy.2014.04.020
Malmo, O., & Reitan, A. (1985). Wave-power absorption by an oscillating water column in a channel. Journal of Fluid Mechanics, 158, 153-175. https://doi.org/10.1017/S0022112085002592
Malmo, O., & Reitan, A. (1986). Wave-power absorption by an oscillating water column in a reflecting wall. Applied Ocean Research, (United Kingdom), 8(1). https://doi.org/10.1016/S0141-1187(86)80030-X
Marjani, A. El., Castro, F., Rodriguez, M. A., & Santos, M. T. P. (2008). Numerical modelling in wave energy conversion systems. Energy, 33, 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018
Morris-Thomas, M. T., Irvin, R. J., & Thiagarajan, K. P. (2007). An investigation into the hydrodynamic efficiency of an oscillating water column. J, V, PP. https://doi.org/10.1115/1.2426992
Ning, D. Z., Shi, J., Zou, Q. P., & Teng, B. (2015). Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method). Energy, 83, 177-188. https://doi.org/10.1016/j.energy.2015.02.012
Ning, D. Z., Wang, R. Q., Zou, Q. P., & Teng, B. (2016). An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter. Applied Energy, 168, 636-648. https://doi.org/10.1016/j.apenergy.2016.01.107
Pinson, P., Reikard, G., & Bidlot, J. R. (2012). Probabilistic forecasting of the wave energy flux. Applied Energy, 93, 364-370. https://doi.org/10.1016/j.apenergy.2011.12.040
Pontes, M. T., & Falcao, A. N. T. Ó. N. I. O. (2001, October). Ocean energies: resources and utilisation. world energy council. 18th Congress, Buenos Aires.
Ranjan, S., & DebRoy, P. (2023a). Numerically investigated the performance of parabolic bottom profile land-fixed OWC by changing the orifice ratio and relative opening. Arabian Journal for Science and Engineering 48, 12091–12105. https://doi.org/10.1007/s13369-023-07677-0
Ranjan, S., & DebRoy, P. (2023b). Numerical investigation of optimal hydrodynamic performance by changing the orifice ratio and relative opening of a land-fixed rectangular-based OWC. Journal of Applied Fluid Mechanics, 16(11), 2263-2276. https://doi.org/10.47176/jafm.16.11.1799
Rodríguez, A. A. M., Vanegas, G. P., Serratos, B. E. V., Martinez, I. O., Mendoza, E., Ilzarbe, J. M. B., Sundar, V., & Silva, R. (2023). The hydrodynamic performance of a shore-based oscillating water column device under random wave conditions. Ocean Engineering, 269, 113573. https://doi.org/10.1016/j.oceaneng.2022.113573
Rusvan, A. A., Maricar, F., Thaha, M. A., & Paotonan, C., (2024) Evaluation of tidal energy potential using a two-way tidal energy model. Civil Engineering Journal, 10, (09), 3011-3033. http://dx.doi.org/10.28991/CEJ-2024-010-09-016
Simonetti, I., & Cappietti, L., (2021) Hydraulic performance of oscillating water column structures as anti-reflection devices to reduce harbour agitation. Coastal Engineering 165, 103837. https://doi.org/10.1016/j.coastaleng.2020.103837
Simonetti, I., Cappietti, L., Elsafti, H., & Oumeraci, H. (2017). Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study. Energy, 139, 1197-1209. https://doi.org/10.1016/j.energy.2017.08.033
Sukkee, M., & Kongphan, P., (2024). Innovative Metal Powder Production Using CFD with Convergent-Divergent Nozzles in Wire Arc Atomization. HighTech and Innovation Journal, 5(3), 551-571. http://dx.doi.org/10.28991/HIJ-2024-05-03-02
Teixeira, P. R. F., Davyt, D. P., Didier, E., & Ramalhais, R., (2013). Numerical simulation of an oscillating water column device using a code based on Navier-Stokes equations. Energy, 61, 513-530. https://doi.org/10.1016/j.energy.2013.08.062
Thiruvenkatasamy, K., & Neelamani, S. (1997). On the efficiency of wave energy caissons in array. Applied Ocean Research, 19(1), 61-72. https://doi.org/10.1016/S0141-1187(97)00008-4
Tseng, R. S., Wu, R. H., & Huang, C. C. (2000). Model study of a shoreline wave-power system. Ocean Engineering, 27(8), 801-821. https://doi.org/10.1016/S0029-8018(99)00028-1
Vicinanza, D., Contestabile, P., Nørgaard, J. Q. H., & Andersen, T. L., (2014) Innovative rubble mound breakwaters for overtopping wave energy conversion, Coastal Engineering 88, 154-170. http://dx.doi.org/10.1016/j.coastaleng.2014.02.004
Vicinanza, D., Lauro, E. D.,  Contestabile, P., Gisonni, C., Lara, J. L., & Losada, I. J., (2019). Review of innovative harbor breakwaters for wave-energy conversion, Journal of Waterway, Port, Coastal, and Ocean Engineering 145 (4), 03119001-18. http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000519
Washio, Y., Osawa, H., Nagata, Y., Furuyama, H., & Fujita, T. (2000). The offshore floating type wave power device ‘Mighty Whale’: open sea tests. Proceedings of the 10 International Offshore and Polar Engineering Conference, 373–380, Seattle, USA. https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE00/All-ISOPE00/6815
Whittaker, T. J. T., McIlwaine, S. J., & Raghunathan, S. (1993, July). A review of the Islay shoreline wave power station. Proceedings of First European Wave Energy Symposium.
Yadav, S. S., & DebRoy, P. (2022). Generation of stable linear waves in shallow water in a Numerical wave tank. Journal of Applied Fluid Mechanics, 15(2), 537-549. https://doi.org/10.47176/jafm.15.02.32987