Ashlin, S. J., Sundar, V., & Sannasiraj, S. A. (2016). Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics.
Renewable Energy,
96, 341-353.
https://doi.org/10.1016/j.renene.2016.04.091
Brito, M., Ferreira, R. M. L., Teixeira, L., Neves, M. G., & Gil, L. (2020) Experimental investigation of the flow field in the vicinity of an oscillating wave surge converter.
Journal of Marine Science and Engineering 8(976), 1-18.
https://doi.org/10.3390/jmse8120976
Çelik, A., & Altunkaynak, A. (2018). Experimental and analytical investigation on chamber water surface fluctuations and motion behaviours of water column type wave energy converter.
Ocean Engineering, 150, 209–220.
https://doi.org/10.1016/j.oceaneng.2017.12.065
Çelik, A., & Altunkaynak, A. (2020). Estimation of water column surface displacement of a fixed oscillating water column by simple mechanical model with determination of hydrodynamic parameters via physical experimental model.
Journal of Waterway, Port, Coastal, and Ocean Engineering,
146(5), 04020030.
http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000593
Çelik, A., & Altunkaynak, A. (2021). An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber.
Energy,
230, 120827.
https://doi.org/10.1016/j.energy.2021.120827
Çelik, A., (2022). An experimental investigation into the effects of front wall geometry on OWC performance for various levels of applied power take-off dampings.
Ocean Engineering, 248, 110761.
https://doi.org/10.1016/j.oceaneng.2022.110761
Cruz-Pérez, N., Alcántara, J. S. R., Koronaiou, V. L. P., Jančula, A., Martín, J. R., García-Gil, A., Fontes, J. C., & Santamarta, J. C. (2024). SWOT analysis of the benefits of hydropower energy in four archipelagos.
Civil Engineering Journal (E-ISSN: 2476-3055; ISSN: 2676-6957),
10(07), 2370-2383.
http://dx.doi.org/10.28991/CEJ-2024-010-07-019
Gonçalves, R. A. A. C., Teixeira, P. R. F., Didier, E., & Torres, F. R. (2020). Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber.
Renewable Energy,
153, 1183-1193.
https://doi.org/10.1016/j.renene.2020.02.080
Gouaud, F., Rey, V., Piazzola, J., & Van Hooff, R. (2010). Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound.
Coastal Engineering,
57(11-12), 996-1005.
https://doi.org/10.1016/j.coastaleng.2010.06.003
Hotta, H., Miyazaki, T., Washio, Y., & Ishii, S. (1988). On the performance of the wave power device Kaimei—the results on the open sea tests. Proceedings of the Seventh International Conference on Offshore Mechanics and Arctic Engineering, Houston, TX, USA.
Iturrioz, A., Guanche, R., Lara, J. L., Vidal, C., & Losada, I. J. (2015). Validation of OpenFOAM® for oscillating water column three-dimensional modeling.
Ocean Engineering,
107, 222-236.
https://doi.org/10.1016/j.oceaneng.2015.07.051
Launder, B. E. (1989). Second-moment closure and its use in modelling turbulent industrial flows.
International Journal for Numerical Methods in Fluids, 9, 963-985.
https://doi.org/10.1002/fld.1650090806
Liu, Z., Hyun, B., Jin, J., Hong, K., & Lee, Y. (2016). OWC air chamber performance prediction under impulse turbine damping effects.
Science China Technological Sciences,
59, 657-666.
https://doi.org/10.1007/s11431-016-6030-5
López, I., Pereiras, B., Castro, F., & Iglesias, G. (2014). Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model.
Applied Energy,
127, 105-114.
https://doi.org/10.1016/j.apenergy.2014.04.020
Morris-Thomas, M. T., Irvin, R. J., & Thiagarajan, K. P. (2007). An investigation into the hydrodynamic efficiency of an oscillating water column. J, V, PP.
https://doi.org/10.1115/1.2426992
Ning, D. Z., Shi, J., Zou, Q. P., & Teng, B. (2015). Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method).
Energy,
83, 177-188.
https://doi.org/10.1016/j.energy.2015.02.012
Pontes, M. T., & Falcao, A. N. T. Ó. N. I. O. (2001, October). Ocean energies: resources and utilisation. world energy council. 18th Congress, Buenos Aires.
Ranjan, S., & DebRoy, P. (2023a). Numerically investigated the performance of parabolic bottom profile land-fixed OWC by changing the orifice ratio and relative opening.
Arabian Journal for Science and Engineering 48, 12091–12105.
https://doi.org/10.1007/s13369-023-07677-0
Ranjan, S., & DebRoy, P. (2023b). Numerical investigation of optimal hydrodynamic performance by changing the orifice ratio and relative opening of a land-fixed rectangular-based OWC.
Journal of Applied Fluid Mechanics,
16(11), 2263-2276.
https://doi.org/10.47176/jafm.16.11.1799
Rodríguez, A. A. M., Vanegas, G. P., Serratos, B. E. V., Martinez, I. O., Mendoza, E., Ilzarbe, J. M. B., Sundar, V., & Silva, R. (2023). The hydrodynamic performance of a shore-based oscillating water column device under random wave conditions.
Ocean Engineering, 269, 113573.
https://doi.org/10.1016/j.oceaneng.2022.113573
Rusvan, A. A., Maricar, F., Thaha, M. A., & Paotonan, C., (2024) Evaluation of tidal energy potential using a two-way tidal energy model.
Civil Engineering Journal,
10, (09), 3011-3033.
http://dx.doi.org/10.28991/CEJ-2024-010-09-016
Simonetti, I., Cappietti, L., Elsafti, H., & Oumeraci, H. (2017). Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study.
Energy, 139, 1197-1209.
https://doi.org/10.1016/j.energy.2017.08.033
Sukkee, M., & Kongphan, P., (2024). Innovative Metal Powder Production Using CFD with Convergent-Divergent Nozzles in Wire Arc Atomization.
HighTech and Innovation Journal,
5(3), 551-571.
http://dx.doi.org/10.28991/HIJ-2024-05-03-02
Teixeira, P. R. F., Davyt, D. P., Didier, E., & Ramalhais, R., (2013). Numerical simulation of an oscillating water column device using a code based on Navier-Stokes equations.
Energy,
61, 513-530.
https://doi.org/10.1016/j.energy.2013.08.062
Vicinanza, D., Contestabile, P., Nørgaard, J. Q. H., & Andersen, T. L., (2014) Innovative rubble mound breakwaters for overtopping wave energy conversion,
Coastal Engineering 88, 154-170.
http://dx.doi.org/10.1016/j.coastaleng.2014.02.004
Vicinanza, D., Lauro, E. D., Contestabile, P., Gisonni, C., Lara, J. L., & Losada, I. J., (2019). Review of innovative harbor breakwaters for wave-energy conversion,
Journal of Waterway, Port, Coastal, and Ocean Engineering 145 (4), 03119001-18.
http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000519
Washio, Y., Osawa, H., Nagata, Y., Furuyama, H., & Fujita, T. (2000).
The offshore floating type wave power device ‘Mighty Whale’: open sea tests. Proceedings of the 10 International Offshore and Polar Engineering Conference, 373–380, Seattle, USA.
https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE00/All-ISOPE00/6815
Whittaker, T. J. T., McIlwaine, S. J., & Raghunathan, S. (1993, July). A review of the Islay shoreline wave power station. Proceedings of First European Wave Energy Symposium.
Yadav, S. S., & DebRoy, P. (2022). Generation of stable linear waves in shallow water in a Numerical wave tank.
Journal of Applied Fluid Mechanics,
15(2), 537-549.
https://doi.org/10.47176/jafm.15.02.32987