Abdelghany, E. S., Farghaly, M. B., Almalki, M. M., Sarhan, H. H., Essa, M. E. S. M. (2023). Machine learning and iot trends for intelligent prediction of aircraft wing anti-icing system temperature. Aerospace,
10, 676.
https://doi.org/10.3390/aerospace10080676
Aliaga, C, N., Aube, M, S., Baruzzi, G, S., & Habashi, W, G. (2011). Fensap-ice-unsteady: unified in-flight icing simulation methodology for aircraft rotorcraft and jet engines.
Journal of Aircraft, 48(1), 119-126.
https://doi.org/10.2514/1.C000327
Appiah, K. P., Martos, B., Atuahene, I., & William, S. V. (2013). U.S. inflight icing accidents and incidents, 2006 to 2010. Industrial & Systems Engineering Research Conference A Krishnamurthy & Wkv Chan.
Bourgault, Y., Beaugendre, H., & Habashi, W. G. (2000). Development of a shallow-water icing model in fensap-ice.
Journal of Aircraft, 37(4), 640-646.
https://doi.org/10.2514/2.2646.
Bourgault, Y., Habashi, W. G., Dompierre, J., & Baruzzi, G. S., (1999). A Finite element method study of eulerian droplets impingement models.
International Journal for Numerical Methods in Fluids, 29(4), 429-449.
https://doi.org/10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F
Bu, X., Yang, R., Yu, J., Shen, X., & Lin, G. (2017). Fast algorithm for prediction of airfoil anti-icing heat load.
Energy and Power Engineering, 5, 493-497.
https://doi.org/10.4236/epe.2013.54B095
Chang, S., Leng, M., Wu, H., & Thompson, J. (2016). Aircraft ice accretion prediction using neural network and wavelet packet transform.
Aircraft Engineering and Aerospace Technology: An International Journal, 88(1), 128-136.
https://doi.org/10.1108/AEAT-05-2014-0057
Civil Aviation Administration of China. (2011). CCAR25 transport category aircraft certification standards.
Dai, H., Zhu, C. L., Zhao, H. Y., & Liu, S. Y. (2021). A new ice accretion model for aircraft icing based on phase-field method.
Applied Sciences, 11(12), 5693.
https://doi.org/10.3390/app11125693
European Union Aviation Safety Agency. (2016). Certification specifications and acceptable means of conmpliance for large aeroplanes.
Federal Aviation Administration. (2004). Certification of transport category airplanes for flight in icing conditions: FAA AC25.1419-1A.
Forrester, A., Sobester, A., & Keane, A. (2008). Engineering design via surrogate modelling: a practical guide. DBLP.
Fortin, G., Laforte, J. L., & Ilinca, A. (2006). Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model.
International Journal of Thermal Sciences, 45(6), 595-606.
https://doi.org/10.1016/j.ijthermalsci.2005.07.006
Habashi, W. G., Morency, F., & Beaugendre, H. (2003).
FENSAP-ICE: A second generation 3D CFD-based in-flight icing simulation system. SAE Technical Paper Series.
https://doi.org/10.4271/2003-01-2157
Han, Z. H. (2016). Kriging surrogate model and its application to design optimization: A review of recent progress. Acta Aeronautica et Astronautica Sinica, 37(11), 3197-3225.
Jung, S. K., Shin, S., Myong, R. S., & Cho, T. H. (2011). An efficient CFD-based method for aircraft icing simulation using a reduced order model. Journal of Mechanical Science & Technology, 25(3): 703-711.
https://doi.org/10.1007/s12206-011-0118-4
Li, S., Qin, J., He, M., & Paoli, R. (2020). Fast evaluation of aircraft icing severity using machine learning based on XGBoost.
Aerospace, 7(4), 36.
https://doi:10.3390/aerospace7040036
Lin, G, P., Bu, X, Q., & Shen, X, B. (2015).
Aircraft icing and anti icing technology. Beijing University of Aeronautics and Astronautics Press.
https://isbn.org/9787512420182
Liu, T., Dong, L., Huang, R. (2019). Iceshape prediction method of aero-icing based on reduced order model. Journal of Beijing University of Aeronautics and Astronautics, 45(5), 1033-1041.
Milani, Z, R., Matida, E., Razavi, F., Sultana, K, R., Patterson, T., Nichrman, L., Benmeddour A., & Bala, K. (2024). Numerical icing simulations of cylindrical geometry and comparisons to flight test results.
Journal of Aircraft, 61(4), 1272-1282.
https://doi.org/10.2514/1.C037682
Min, G., & Jiang, N. (2024). Flow fields prediction for data-driven model of parallel twin cylinders based on pod-rbfnn and pod-bpnn surrogate models.
Annals of Nuclear Energy, 199(5), 1.1-1.22.
https://doi.org/10.1016/j.anucene.2024.110342
Niu, J., Sang, W., & Li, D. (2023). Fast prediction of multiple parameters related to iced airfoil based on POD and kriging methods.
Journal of Applied Fluid Mechanics, 325-336.
https://doi.org/10.47176/jafm.16.02.1379
Pellissier, M. C., Habashi, W. G., & Pueyo, A. (2012). Optimization via FENSAP-ICE of aircraft hot-air anti-icing systems.
Journal of Aircraft, 48(1), 265-276.
https://doi.org/10.2514/1.C031095
Qiu, Y, S., Bai, J, Q., & Hua, J. (2013). Flow field estimation method based on proper orthogonal decomposition and surrogate model.
Acta Aeronautica et Astronautica Sinica, 34 (6), 1249-1260.
https://doi.org/10.7527/S1000-6893.2013.0229
Ruff, G. A., & Anderson, D. N. (2003).
Quantification of ice accretions for icing scaling evaluations. 36th AIAA Aerospace Sciences Meeting and Exhibit. AIAA-98-0195.
https://doi.org/10.2514/6.1998-195
Shin, J., & Bond T. (1992).
Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel. 30th Aerospace Sciences Meeting and Exhibit. AIAA-92-0647.
https://doi.org/10.2514/6.1992-647
Sirovich, L. (1987). Turbulence and the dynamics of coherent structures Ⅲ: Dynamics and scaling.
Quarterly of Applied Mathematics, 45 (3), 583-590.
https://doi.org/10.1090/qam/910462
Suo, W., Sun, X., Zhang, W., & Yi, X. (2024). Aircraft ice accretion prediction based on geometrical constraints enhancement neural networks.
International Journal of Numerical Methods for Heat & Fluid Flow, 34(9), 3542-3568.
https://doi.org/10.1108/HFF-01-2024-0019
Yi, X., Wang, Q., Chai C., & Guo, L. (2021). Prediction model of aircraft icing based on deep neural network.
Transactions of Nanjing University of Aeronautics and Astronautics, 38(04):535-544.
https://doi.org/10.16356/j.1005-1120.2021.04.001
Yi, X. (2007). Numerical computation of aircraft icing and study on icing test scaling law. China Aerodynamics Research and Development Center, 2007.
Zhao, H., Gao, Z. H., & Xia, L. (2022). Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-kriging surrogate model.
Computers & Fluids.
https://doi.org/10.1016/j.compfluid.2022.105643