Albayrak, M., Sarper, B., Saglam, M., & Birinci, S. (2023). The role of jet-to-crossflow velocity ratio on convective heat transfer enhancement in the cooling of discrete heating modules.
Thermal Science and Engineering Progres, 37, 101549.
https://doi.org/10.1016/j.tsep.2022.101549
Anderson, E. A., & Spall, R. E. (2001). Experimental and numerical investigation of two dimensional parallel jets.
Transactions of the ASME, 123(2), 401-406.
https://doi.org/10.1115/1.1363701
Aziz, M. A., Gad, I. A. M., Mohammed, E. S. F. A., & Mohammed, R. H. (2012). Experimental and numerical study of influence of air ceiling diffusers on room air flow characteristics.
Energy and Buildings,
55, 738–746.
https://doi.org/10.1016/j.enbuild.2012.09.027
Bennia, A., Fellouah, H., Loukarfi, L., & Naji, H. (2020). Experiments and large-eddy simulations of lobed and swirling turbulent thermal jets for hvac's applications.
Journal of Applied Fluid Mechanics, 13(1), 103-117.
https://doi.org/10.29252/jafm.13.01.29970
Bennia, A., Loukarfi, L., Khelil, A., Mohamadi, S., Braikia, M., & Naji, H. (2016). Contribution to the experimental and numerical dynamic study of a turbulent jet issued from lobed diffuser.
Journal of Applied Fluid Mechanics,
9(6), 2957–2967.
https://doi.org/10.29252/jafm.09.06.25953
Bouhamidi, Y., Khelil, A., Hadj Meliani, M., Said, N., & Loukarfi, L. (2020). Numerical investigation of the geometry influence on the aerodynamic fields of the free turbulent jets. Structural Integrity And Life, 20, (3), 219–224.
Bragança, P. (2017). Ventilation par mélange utilisant des dispositifs de diffusion munis d’inserts lobés : analyse des écoulements moteurs et du confort thermique induit [PhD thesis, University of Rochelle].
Braikia, M., Loukarfi, L., Khelil, A., & Naji, H. (2012). Improvement of thermal homogenization using multiple swirling jets.
Thermal science, 16 (1), 239-250.
https://doi.org/10.2298/TSCI101026131B
Chaour, M., Hamadi, B., Boucherma, D., Boulkroune, S., Achour, T., & Chorfi, S. (2024). Numerical study of the interaction between jets in a reheating furnace.
Studies in Engineering and Exact Sciences, Curitiba, 5(2), 01-14.
https://doi.org10.54021/seesv5n2-587.
Dia, A. (2012). Simulation de jets d’air lobés pour l’optimisation des Unités Terminales de Diffusion d'Air [PhD thesis, University of Rochelle].
Fellague chebra, A., Khelil, A., Braikia, M., & Bedrouni, M. (2024). Comparative analysis of modified jet diffuser geometry for evaluating the impact of rounded edges and chamfered design on cooling efficiency of electronic components in cross flow and impinging jet.
Journal of Thermal Engineering, 10(4), 961−977.
https://doi.org/10.14744/thermal.0000849
Gauntner, J. W., Livingood, J. N. B., & Hrycak, P. (1970). Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. Technical Report, NASA.
Goldstein, R. J., & Franchett, M. E. (1988). Heat transfer from a flat surface to an oblique impinging jet.
Journal of Heat Transfer, 110, 84-90.
http://dx.doi.org/10.1115/1.3250477.
Hunter, C., Presz, W., & Reynolds, G. (2002). Thrust augmentation with mixer/ejector systems. 40th AIAA Aerospace Sciences Meeting & Exhibit, 230.
Khelil, A., Naji, H., Braikia, M., & Loukarfi, L. (2015). Comparative investigation on heated swirling jets using experimental and numerical computations.
Heat Transfer Engineering, 36 (1), 43–57.
https://doi.org/10.1080/01457632.2014.906279
Lieber, L. S., & Weir, D. S. (2007). Comparison of measured low-frequency engine noise with combustion and jet noise predictions for a turbofan engine with an internal lobed mixer nozzle.
Turbo Expo: Power for Land, Sea, and Air, 47950, 1511–1520.
https://doi.org/10.1115/GT2007-28027
Loukarfi, L. (2021). Thermique appliquée, pages bleues. Algiers. ISBN 978-9947-34-231-2
Massip, Y. Rivas, A., Larraona, G. S., Anton, R., Ramos, J. C., & Moshfegh, B. (2012). Experimental study of the turbulent flow around a single wall-mounted cube exposed to a cross-flow and an impinging jet.
International Journal Heat Fluid Flow, 38, 50–71.
https://doi.org/10.1016/j.ijheatfluidflow.2012.07.004
Meslem, A., Bode, F., Nastase, I., & Martin O. (2012). Optimization of lobed perforated panel diffuser: numerical study of orifice geometry.
Modern Applied Science, 59, 6-12.
http://dx.doi.org/10.5539/mas.v6n12p59
Mitchell, M. G., Smith, L. L., Karagozian, A. R., & Smith, O. I. (2016). Emissions measurements from a lobed fuel injector/burner.
American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1998-802
Roux, S., Brizzi, L. E., & Dorignac, E. (2009).
Dynamics of a round jet impinging a flat wall constrained by acoustic forcing. 19th French Congress of Mechanics Marseille.
https://hal.science/hal-03390814v1
Shan, G., Zhang, J., & Huang, G. (2011). Experimental and numerical studies on lobed ejector exhaust system for micro turbojet engine.
Engineering Applications of Computational Fluid Mechanics, 5(1), 141–148.
https://doi.org/10.1080/19942060.2011.11015358
Wildi, T. (2014). Electrical machines, drives, and power systems (5th ed.). Pearson.
Zahout, N., Braikia, M., Khelil, A., & Naji, H. (2024). Thermal and dynamic characterization of a multi-jet system with different geometry diffusers.
Journal of Thermal Engineering, 10(2) 404−429.
https://doi.org/10.18186/thermal.1456643.