Chabannes, L., Štefan, D., & Rudolf, P. (2021). Effect of splitter blades on performances of a very low specific speed pump.
Energies, 14(13), 3785.
https://doi.org/10.3390/en14133785
Clark, C. J., Pullan, G., Curtis, E., & Goenaga, F. (2017). Secondary flow control in low aspect ratio vanes using splitters.
Journal of Turbomachinery, 139(9), 091003.
https://doi.org/10.1115/1.4036190
Djebedjian, B. O. (2020). Theoretical model to predict the performance of centrifugal pump equipped with splitter blades (Dept.M). MEJ.
Mansoura Engineering Journal, 34(2), 50-70.
https://doi.org/10.21608/bfemu.2020.126166
Dong, G., Luo, Z., Guo, T., Zhang, X., Shan, R., & Dai, L. (2024). The splitter blade pump–turbine in pump mode: The hump characteristic and hysteresis effect flow mechanism.
Processes, 12(2), 324.
https://doi.org/10.3390/pr12020324
Fatahian, E., Ismail, F., Ishak, M. H. H., & Chang, W. S. (2022). The role of wake splitter deflector on performance enhancement of Savonius wind turbine.
Physics of Fluids, 34(9), 095111.
https://doi.org/10.1063/5.0111568
Feidt, M., & Costea, M. (2020). Effect of machine entropy production on the optimal performance of a refrigerator.
Entropy, 22(9), 913.
https://doi.org/10.3390/e22090913
Gölcü, M., Usta, N., & Pancar, Y. (2007). Effects of splitter blades on deep well pump performance.
Journal of Energy Resources Technology, 129(3), 169-176.
https://doi.org/10.1115/1.2748810
Gu, Y., Sun, H., Wang, C., Lu, R., Liu, B., & Ge, J. (2024). Effect of trimmed rear shroud on performance and axial thrust of multi-stage centrifugal pump with emphasis on visualizing flow losses.
Journal of Fluids Engineering, 146(1).
https://doi.org/10.1115/1.4063438
Hu, J., Zhao, Z., He, X., Zeng, W., Yang, J., & Yang, J. (2023). Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades.
Renewable Energy, 212, 333-349.
https://doi.org/10.1016/j.renene.2023.05.074
Ji, L., He, S., Li, W., Shi, W., Li, S., Li, H., & Agarwal, R. (2023). Exploration of blade thickness in suppressing rotating stall of mixed flow pump.
Arabian Journal for Science and Engineering, 48(6), 8227-8251.
https://doi-org.iclibezp1.cc.ic.ac.uk/10.1007/s13369-023-07901-x
Ji, L., Li, W., Shi, W., & Agarwal, R. K. (2021a). Application of Wray–Agarwal turbulence model in flow simulation of a centrifugal pump with semi-spiral suction chamber.
Journal of Fluids Engineering, 143(3), 031203.
https://doi.org/10.1115/1.4049050
Ji, L., Li, W., Shi, W., Chang, H., & Yang, Z. (2020a). Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis.
Energy, 199, 117447.
https://doi.org/10.1016/j.energy.2020.117447
Ji, L., Li, W., Shi, W., Tian, F., & Agarwal, R. (2020b). Diagnosis of internal energy characteristics of mixed-flow pump within stall region based on entropy production analysis model.
International Communications in Heat and Mass Transfer, 117, 104784.
https://doi.org/10.1016/j.icheatmasstransfer.2020.104784
Ji, L., Li, W., Shi, W., Tian, F., & Agarwal, R. (2021b). Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis.
Energy, 236, 121381.
https://doi.org/10.1016/j.energy.2021.121381
Ji, L., Pu, W., Li, W., Shi, W., Tian, F., Yang, Y., & Agarwal, R. (2024). Flow instability in mixed-flow/axial-flow pump: A review of relationship between tip leakage flow distortion and rotating stall.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. https://doi.org/10.1177/09576509241287838
Jin, F., Luo, Y., Zhao, Q., Cao, J., & Wang, Z. (2023). Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process.
Energy, 284, 129216.
https://doi.org/10.1016/j.energy.2023.129216
Kergourlay, G., Younsi, M., Bakir, F., & Rey, R. (2007). Influence of splitter blades on the flow field of a centrifugal pump: testâanalysis comparison.
International Journal of Rotating Machinery, 2007(1), 085024.
https://doi.org/10.1155/2007/85024
Li, W., Huang, Y., Ji, L., Ma, L., Agarwal, R. K., & Awais, M. (2023). Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump.
Energy, 271, 127082.
https://doi.org/10.1016/j.energy.2023.127082
Li, W., Li, E., Ji, L., Zhou, L., Shi, W., & Zhu, Y. (2020). Mechanism and propagation characteristics of rotating stall in a mixed-flow pump.
Renewable Energy, 153, 74-92.
https://doi.org/10.1016/j.renene.2020.02.003
Li, W., Li, H., Liu, M., Ji, L., Agarwal, R. K., & Jin, S. (2024a). Energy dissipation mechanism of tip-leakage cavitation in mixed-flow pump blades.
Physics of Fluids, 36(1), 015115.
https://doi.org/10.1063/5.0183540
Li, W., Yang, Q., Yang, Y., Ji, L., Shi, W., & Agarwal, R. (2024b). Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics.
Applied Energy, 362, 123038.
https://doi.org/10.1016/j.apenergy.2024.123038
Liang, Z., Wang, J., Jiang, B., Zhou, H., Yang, W., & Ling, J. (2023). Large-eddy simulation of flow separation control in low-speed diffuser cascade with splitter blades.
Processes, 11(11), 3249.
https://doi.org/10.3390/pr11113249
Miyamoto, H., Nakashima, Y., & Ohba, H. (1992). Effects of splitter blades on the flows and characteristics in centrifugal impellers.
JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 35(2), 238-246.
https://doi.org/10.1299/jsmeb1988.35.2_238
Miyamoto, H., Nakashima, Y., Yasunaga, Y., & Shiramoto, K. (1989a). Study on flow of centrifugal impeller: 1st report, flow measurement in unshrouded impeller passage.
Transactions of the Japan Society of Mechanical Engineers (in Japanese), 55(512B), 1137-1141.
https://doi.org/10.1299/kikaib.55.1137
Miyamoto, H., Nakashima, Y., Yasunaga, Y., & Shiramoto, K. (1989b). Study on flow of centrifugal impeller: 2nd report, flow measurement in shrouded impeller passage.
Transactions of the Japan Society of Mechanical Engineers (in Japanese), 55(518B), 3108-3112.
https://doi.org/10.1299/kikaib.55.3108
Namazizadeh, M., Talebian Gevari, M., Mojaddam, M., & Vajdi, M. (2020). Optimization of the splitter blade configuration and geometry of a centrifugal pump impeller using design of experiment.
Journal of Applied Fluid Mechanics, 13(1), 89-101.
https://doi.org/10.29252/jafm.13.01.29856
Poppi, S., Bales, C., Haller, M. Y., & Heinz, A. (2016). Influence of boundary conditions and component size on electricity demand in solar thermal and heat pump combisystems.
Applied Energy, 162, 1062-1073.
https://doi.org/10.1016/j.apenergy.2015.10.190
Pu, W., Ji, L., Li, W., Shi, W., Tian, F., Xiao, C., Yang, Q., Yang, Y., & Agarwal, R. (2024a). Study on the particle dynamic characteristics in a centrifugal pump based on an improved computational fluid dynamics-discrete element model.
Physics of Fluids, 36(12), 123331.
https://doi.org/10.1063/5.0242078
Pu, W., Ji, L., Li, W., Yang, Q., Liu, Z., Yang, Y., Li, H., Huang, W., & Agarwal, R. (2024b). Experimental study on the unsteady evolution mechanism of centrifugal pump impeller wake under solid–liquid two-phase conditions: Impact of particle concentration.
Physics of Fluids, 36(11), 113327.
https://doi.org/10.1063/5.0239240
Roache, P. J. (1993). American society of mechanical engineers. fluids engineering division. quantification of uncertainty in computational fluid dynamics.
American Society of Mechanical Engineers, 29(1), 123-60.
https://doi.org/10.1146/annurev.fluid.29.1.123.
Schleicher, W. C., Riglin, J. D., & Oztekin, A. (2015). Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design.
Renewable Energy, 76, 234-241.
https://doi.org/10.1016/j.renene.2014.11.032
Siddique, M. H., Samad, A., & Hossain, S. (2022). Centrifugal pump performance enhancement: Effect of splitter blade and optimization.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 236(2), 391-402.
https://doi.org/10.1177/09576509211037407
Song, H., Zhang, J., Huang, P., Cai, H., Cao, P., & Hu, B. (2020). Analysis of rotor-stator interaction of a pump-turbine with splitter blades in a pump mode.
Mathematics, 8(9), 1465.
https://doi.org/10.3390/math8091465
Wang, B., Zhang, H., Deng, F., Wang, C., & Si, Q. (2020). Effect of short blade circumferential position arrangement on gas–liquid two-phase flow performance of centrifugal pump.
Processes, 8(10), 1317.
https://doi.org/10.3390/pr8101317
Wu, C., Pu, K., Li, C., Wu, P., Huang, B., & Wu, D. (2022). Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump.
Energy, 246, 123394.
https://doi.org/10.1016/j.energy.2022.123394
Xu, Z., Kong, F., Tang, L., Liu, M., Wang, J., & Qiu, N. (2022). Effect of blade thickness on internal flow and performance of a plastic centrifugal pump.
Machines, 10(1), 61.
https://doi.org/10.3390/machines10010061
Ye, L., Yuan, S., Zhang, J., & Yuan, Y. (2012).
Effects of splitter blades on the unsteady flow of a centrifugal pump. Fluids Engineering Division Summer Meeting, Rio Grande, Puerto Rico, USA, 44755, 435-441.
https://doi.org/10.1115/FEDSM2012-72155
Yu, H., Wang, T., Dong, Y., Gou, Q., Lei, L., & Liu, Y. (2023). Numerical investigation of splitter blades on the performance of a forward-curved impeller used in a pump as turbine.
Ocean Engineering, 281, 114721.
https://doi.org/10.1016/j.oceaneng.2023.114721
Zhang, J., Li, G., Mao, J., Yuan, S., Qu, Y., & Jia, J. (2020). Numerical investigation of the effects of splitter blade deflection on the pressure pulsation in a low specific speed centrifugal pump.
Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(4), 420-432.
https://doi.org/10.1177/0957650919867176
Zhu, L., Jin, Y., Li, Y., Jin, Y., Wang, Y., & Zhang, L. (2013). Numerical and experimental study on aerodynamic performance of small axial flow fan with splitter blades.
Journal of Thermal Science, 22(4), 333-339.
https://doi-org.iclibezp1.cc.ic.ac.uk/10.1007/s11630-013-0632-z