Effect Mechanism of Splitter Blade Length on the Energy Performance of Centrifugal Pump

Document Type : Regular Article

Authors

1 School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China

2 School of Mechanical and Electrical Engineering, Chuzhou University, Chuzhou 239000, China

3 Anhui Liuxiang Special Ship Co., Ltd., Mingguang 239400, China

4 National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

5 Ningbo Yi Ji Valve Manufacturing Co., Ltd., Ningbo 315528, China

10.47176/jafm.18.8.3317

Abstract

This study integrates numerical simulation and experimental validation to thoroughly examine the effects of splitter blades and their lengths on the energy performance of centrifugal pumps. The results demonstrate that numerical simulations closely align with experimental data in terms of head and efficiency, with an error margin of less than 5%, underscoring the accuracy and reliability of the simulations. Further analysis reveals that centrifugal pumps equipped with splitter blades display distinct performance characteristics compared to conventional impellers, particularly under low-flow conditions. The head curve of pumps with splitter blades exhibits a pronounced extremum and a positive slope in the low-flow region. Splitter blades play a crucial role in enhancing the head performance of centrifugal pumps, effectively expanding their high-head operating range. However, this improvement is accompanied by some efficiency loss, primarily due to fluid kinetic energy losses within the impeller and volute, as well as the structural design of the splitter blades. This research offers valuable theoretical insights and data to support the hydraulic design optimization of centrifugal pumps.

Keywords

Main Subjects


Chabannes, L., Štefan, D., & Rudolf, P. (2021). Effect of splitter blades on performances of a very low specific speed pump. Energies, 14(13), 3785. https://doi.org/10.3390/en14133785
Clark, C. J., Pullan, G., Curtis, E., & Goenaga, F. (2017). Secondary flow control in low aspect ratio vanes using splitters. Journal of Turbomachinery, 139(9), 091003. https://doi.org/10.1115/1.4036190
Djebedjian, B. O. (2020). Theoretical model to predict the performance of centrifugal pump equipped with splitter blades (Dept.M). MEJ. Mansoura Engineering Journal, 34(2), 50-70. https://doi.org/10.21608/bfemu.2020.126166
Dong, G., Luo, Z., Guo, T., Zhang, X., Shan, R., & Dai, L. (2024). The splitter blade pump–turbine in pump mode: The hump characteristic and hysteresis effect flow mechanism. Processes, 12(2), 324. https://doi.org/10.3390/pr12020324
Fatahian, E., Ismail, F., Ishak, M. H. H., & Chang, W. S. (2022). The role of wake splitter deflector on performance enhancement of Savonius wind turbine. Physics of Fluids, 34(9), 095111. https://doi.org/10.1063/5.0111568
Feidt, M., & Costea, M. (2020). Effect of machine entropy production on the optimal performance of a refrigerator. Entropy, 22(9), 913. https://doi.org/10.3390/e22090913
Gölcü, M., Usta, N., & Pancar, Y. (2007). Effects of splitter blades on deep well pump performance. Journal of Energy Resources Technology, 129(3), 169-176. https://doi.org/10.1115/1.2748810
Gu, Y., Sun, H., Wang, C., Lu, R., Liu, B., & Ge, J. (2024). Effect of trimmed rear shroud on performance and axial thrust of multi-stage centrifugal pump with emphasis on visualizing flow losses. Journal of Fluids Engineering, 146(1). https://doi.org/10.1115/1.4063438
Hu, J., Zhao, Z., He, X., Zeng, W., Yang, J., & Yang, J. (2023). Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades. Renewable Energy, 212, 333-349. https://doi.org/10.1016/j.renene.2023.05.074
Ji, L., He, S., Li, W., Shi, W., Li, S., Li, H., & Agarwal, R. (2023). Exploration of blade thickness in suppressing rotating stall of mixed flow pump. Arabian Journal for Science and Engineering, 48(6), 8227-8251. https://doi-org.iclibezp1.cc.ic.ac.uk/10.1007/s13369-023-07901-x
Ji, L., Li, W., Shi, W., & Agarwal, R. K. (2021a). Application of Wray–Agarwal turbulence model in flow simulation of a centrifugal pump with semi-spiral suction chamber. Journal of Fluids Engineering, 143(3), 031203. https://doi.org/10.1115/1.4049050
Ji, L., Li, W., Shi, W., Chang, H., & Yang, Z. (2020a). Energy characteristics of mixed-flow pump under different tip clearances based on entropy production analysis. Energy, 199, 117447. https://doi.org/10.1016/j.energy.2020.117447
Ji, L., Li, W., Shi, W., Tian, F., & Agarwal, R. (2020b). Diagnosis of internal energy characteristics of mixed-flow pump within stall region based on entropy production analysis model. International Communications in Heat and Mass Transfer, 117, 104784. https://doi.org/10.1016/j.icheatmasstransfer.2020.104784
Ji, L., Li, W., Shi, W., Tian, F., & Agarwal, R. (2021b). Effect of blade thickness on rotating stall of mixed-flow pump using entropy generation analysis. Energy, 236, 121381. https://doi.org/10.1016/j.energy.2021.121381
Ji, L., Pu, W., Li, W., Shi, W., Tian, F., Yang, Y., & Agarwal, R. (2024). Flow instability in mixed-flow/axial-flow pump: A review of relationship between tip leakage flow distortion and rotating stall. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. https://doi.org/10.1177/09576509241287838
Jin, F., Luo, Y., Zhao, Q., Cao, J., & Wang, Z. (2023). Energy loss analysis of transition simulation for a prototype reversible pump turbine during load rejection process. Energy, 284, 129216. https://doi.org/10.1016/j.energy.2023.129216
Kergourlay, G., Younsi, M., Bakir, F., & Rey, R. (2007). Influence of splitter blades on the flow field of a centrifugal pump: test‐analysis comparison. International Journal of Rotating Machinery, 2007(1), 085024. https://doi.org/10.1155/2007/85024
Khalafallah, M. G., Saleh, H. S., Ali, S. M., & Abdelkhalek, H. M. (2021). CFD investigation of flow through a centrifugal compressor diffuser with splitter blades. Journal of Engineering and Applied Sciences, 68, 1-23. https://doi-org.iclibezp1.cc.ic.ac.uk/10.1186/s44147-021-00040-w
Li, W., Huang, Y., Ji, L., Ma, L., Agarwal, R. K., & Awais, M. (2023). Prediction model for energy conversion characteristics during transient processes in a mixed-flow pump. Energy, 271, 127082. https://doi.org/10.1016/j.energy.2023.127082
Li, W., Li, E., Ji, L., Zhou, L., Shi, W., & Zhu, Y. (2020). Mechanism and propagation characteristics of rotating stall in a mixed-flow pump. Renewable Energy, 153, 74-92. https://doi.org/10.1016/j.renene.2020.02.003
Li, W., Li, H., Liu, M., Ji, L., Agarwal, R. K., & Jin, S. (2024a). Energy dissipation mechanism of tip-leakage cavitation in mixed-flow pump blades. Physics of Fluids, 36(1), 015115. https://doi.org/10.1063/5.0183540
Li, W., Yang, Q., Yang, Y., Ji, L., Shi, W., & Agarwal, R. (2024b). Optimization of pump transient energy characteristics based on response surface optimization model and computational fluid dynamics. Applied Energy, 362, 123038. https://doi.org/10.1016/j.apenergy.2024.123038
Liang, Z., Wang, J., Jiang, B., Zhou, H., Yang, W., & Ling, J. (2023). Large-eddy simulation of flow separation control in low-speed diffuser cascade with splitter blades. Processes, 11(11), 3249. https://doi.org/10.3390/pr11113249
Miyamoto, H., Nakashima, Y., & Ohba, H. (1992). Effects of splitter blades on the flows and characteristics in centrifugal impellers. JSME International Journal. Ser. 2, Fluids Engineering, Heat Transfer, Power, Combustion, Thermophysical Properties, 35(2), 238-246. https://doi.org/10.1299/jsmeb1988.35.2_238
Miyamoto, H., Nakashima, Y., Yasunaga, Y., & Shiramoto, K. (1989a). Study on flow of centrifugal impeller: 1st report, flow measurement in unshrouded impeller passage. Transactions of the Japan Society of Mechanical Engineers (in Japanese), 55(512B), 1137-1141. https://doi.org/10.1299/kikaib.55.1137
Miyamoto, H., Nakashima, Y., Yasunaga, Y., & Shiramoto, K. (1989b). Study on flow of centrifugal impeller: 2nd report, flow measurement in shrouded impeller passage. Transactions of the Japan Society of Mechanical Engineers (in Japanese), 55(518B), 3108-3112. https://doi.org/10.1299/kikaib.55.3108
Namazizadeh, M., Talebian Gevari, M., Mojaddam, M., & Vajdi, M. (2020). Optimization of the splitter blade configuration and geometry of a centrifugal pump impeller using design of experiment. Journal of Applied Fluid Mechanics, 13(1), 89-101. https://doi.org/10.29252/jafm.13.01.29856
Poppi, S., Bales, C., Haller, M. Y., & Heinz, A. (2016). Influence of boundary conditions and component size on electricity demand in solar thermal and heat pump combisystems. Applied Energy, 162, 1062-1073. https://doi.org/10.1016/j.apenergy.2015.10.190
Pu, W., Ji, L., Li, W., Shi, W., Tian, F., Xiao, C., Yang, Q., Yang, Y., & Agarwal, R. (2024a). Study on the particle dynamic characteristics in a centrifugal pump based on an improved computational fluid dynamics-discrete element model. Physics of Fluids, 36(12), 123331. https://doi.org/10.1063/5.0242078
Pu, W., Ji, L., Li, W., Yang, Q., Liu, Z., Yang, Y., Li, H., Huang, W., & Agarwal, R. (2024b). Experimental study on the unsteady evolution mechanism of centrifugal pump impeller wake under solid–liquid two-phase conditions: Impact of particle concentration. Physics of Fluids, 36(11), 113327. https://doi.org/10.1063/5.0239240
Roache, P. J. (1993). American society of mechanical engineers. fluids engineering division. quantification of uncertainty in computational fluid dynamics. American Society of Mechanical Engineers, 29(1), 123-60. https://doi.org/10.1146/annurev.fluid.29.1.123.
Schleicher, W. C., Riglin, J. D., & Oztekin, A. (2015). Numerical characterization of a preliminary portable micro-hydrokinetic turbine rotor design. Renewable Energy, 76, 234-241. https://doi.org/10.1016/j.renene.2014.11.032
Shigemitsu, T., Fukutomi, J., Wada, T., & Shinohara, H. (2013). Performance analysis of mini centrifugal pump with splitter blades. Journal of Thermal Science, 22(6), 573-579. https://doi-org.iclibezp1.cc.ic.ac.uk/10.1007/s11630-013-0664-4
Siddique, M. H., Samad, A., & Hossain, S. (2022). Centrifugal pump performance enhancement: Effect of splitter blade and optimization. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 236(2), 391-402. https://doi.org/10.1177/09576509211037407
Song, H., Zhang, J., Huang, P., Cai, H., Cao, P., & Hu, B. (2020). Analysis of rotor-stator interaction of a pump-turbine with splitter blades in a pump mode. Mathematics, 8(9), 1465. https://doi.org/10.3390/math8091465
Wang, B., Zhang, H., Deng, F., Wang, C., & Si, Q. (2020). Effect of short blade circumferential position arrangement on gas–liquid two-phase flow performance of centrifugal pump. Processes, 8(10), 1317. https://doi.org/10.3390/pr8101317
Wu, C., Pu, K., Li, C., Wu, P., Huang, B., & Wu, D. (2022). Blade redesign based on secondary flow suppression to improve energy efficiency of a centrifugal pump. Energy, 246, 123394. https://doi.org/10.1016/j.energy.2022.123394
Xu, Z., Kong, F., Tang, L., Liu, M., Wang, J., & Qiu, N. (2022). Effect of blade thickness on internal flow and performance of a plastic centrifugal pump. Machines, 10(1), 61.https://doi.org/10.3390/machines10010061
Ye, L., Yuan, S., Zhang, J., & Yuan, Y. (2012). Effects of splitter blades on the unsteady flow of a centrifugal pump. Fluids Engineering Division Summer Meeting, Rio Grande, Puerto Rico, USA, 44755, 435-441. https://doi.org/10.1115/FEDSM2012-72155
Yu, H., Wang, T., Dong, Y., Gou, Q., Lei, L., & Liu, Y. (2023). Numerical investigation of splitter blades on the performance of a forward-curved impeller used in a pump as turbine. Ocean Engineering, 281, 114721. https://doi.org/10.1016/j.oceaneng.2023.114721
Zhang, J., Li, G., Mao, J., Yuan, S., Qu, Y., & Jia, J. (2020). Numerical investigation of the effects of splitter blade deflection on the pressure pulsation in a low specific speed centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 234(4), 420-432. https://doi.org/10.1177/0957650919867176
Zhu, L., Jin, Y., Li, Y., Jin, Y., Wang, Y., & Zhang, L. (2013). Numerical and experimental study on aerodynamic performance of small axial flow fan with splitter blades. Journal of Thermal Science, 22(4), 333-339. https://doi-org.iclibezp1.cc.ic.ac.uk/10.1007/s11630-013-0632-z