Aeroelastic Analysis of a Wind Turbine with a Bamboo Honeycomb Structural Web

Document Type : Regular Article

Authors

College of Mechanical Engineering, Xinjiang University, Urumqi 830046, China

10.47176/jafm.18.8.3259

Abstract

As the size and flexibility of wind turbine blades increase, the aeroelastic challenges faced by wind turbines become more pronounced. To prevent blade damage due to vibration and improve the aeroelastic stability of wind turbine blades, this paper proposes a bionic blade with a bionic web inspired by bamboo and honeycomb structures. The fluid-solid interaction analysis of the blades is conducted using computational fluid dynamics and the finite element method, based on the Shear Stress Transport (SST) k-w turbulence model. The displacements, stresses, strains, modal, and harmonic response analyses of both the original and bionic blades are evaluated underrated operating conditions. The results indicate that, compared to the original blade, the maximum displacement of the bionic blade is reduced by 10.1%, the maximum stress value on the blade surface is 2.1% lower, and the maximum strain value is 2.5% lower. The bamboo honeycomb web buffers wind loads in stages during the vibration and deformation of the bionic blade, leading to reduced vibration displacement and improved deformation resistance.

Keywords

Main Subjects


Barr, S. M., & Jaworski, J. W. (2019). Optimization of tow-steered composite wind turbine blades for static aeroelastic performance. Renewable Energy, 139, 859–872. https://doi.org/10.1016/j.renene.2019.02.125
Choi, D. K., An, H. J., Lee, S. Y., & Bae, J. S. (2022). Fluid–Structure Interaction Analysis of a Fabric Skin for Fabric-Covered Wind Turbine Blades. International Journal of Aeronautical and Space Sciences, 23(1), 92–101. https://doi.org/10.1007/s42405-021-00419-2
Deng, Z., Xiao, Q., Huang, Y., Yang, L., & Liu, Y. (2024). A general FSI framework for an effective stress analysis on composite wind turbine blades. Ocean Engineering, 291, 116412. https://doi.org/10.1016/j.oceaneng.2023.116412
Ertorun, E. M., Yayla, M., Isik, D., & Cadirci, S. (2024). One-way fluid–structure interaction modeling and multi-objective optimization of horizontal-axis wind turbine blades equipped with winglets. International Journal of Green Energy, 1–17. https://doi.org/10.1080/15435075.2024.2430432
Garcia-Ribeiro, D., Malatesta, V., Moura, R. C., & Cerón-Muñoz, H. D. (2023). Assessment of RANS-type turbulence models for CFD simulations of horizontal axis wind turbines at moderate Reynolds numbers. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(11), 566. https://doi.org/10.1007/s40430-023-04488-0
Giahi, M. H., & Jafarian Dehkordi, A. (2016). Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation. Renewable Energy, 97, 162–168. https://doi.org/10.1016/j.renene.2016.05.059
Han, S., He, Y., Ye, H., Ren, X., Chen, F., Liu, K., Shi, S. Q., & Wang, G. (2024). Mechanical behavior of bamboo, and its biomimetic composites and structural members: A systematic review. Journal of Bionic Engineering, 21(1), 56–73. https://doi.org/10.1007/s42235-023-00430-1
Herrera, C., Correa, M., Villada, V., Vanegas, J. D., García, J. G., Nieto-Londoño, C., & Sierra-Pérez, J. (2019). Structural design and manufacturing process of a low scale bio-inspired wind turbine blades. Composite Structures, 208, 1–12. https://doi.org/10.1016/j.compstruct.2018.08.061
Huang, S., Qiu, H., & Wang, Y. (2022). Aerodynamic performance of horizontal axis wind turbine with application of dolphin head-shape and lever movement of skeleton bionic airfoils. Energy Conversion and Management, 267, 115803. https://doi.org/10.1016/j.enconman.2022.115803
Huang, Y., Yang, X., Zhao, W., & Wan, D. (2024). Aeroelastic analysis of wind turbine under diverse inflow conditions. Ocean Engineering, 307, 118235. https://doi.org/10.1016/j.oceaneng.2024.118235
Huque, Z., Zemmouri, F., Lu, H., & Kommalapati, R. R. (2024). Fluid–Structure interaction simulations of wind turbine blades with pointed tips. Energies, 17(5), 1090. https://doi.org/10.3390/en17051090
Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development (No. NREL/TP-500-38060, 947422; p. NREL/TP-500-38060, 947422). https://doi.org/10.2172/947422
Keprate, A., Bagalkot, N., Siddiqui, M. S., & Sen, S. (2023). Reliability analysis of 15MW horizontal axis wind turbine rotor blades using fluid-structure interaction simulation and adaptive kriging model. Ocean Engineering, 288, 116138. https://doi.org/10.1016/j.oceaneng.2023.116138
Li, J., Chen, J., & Chen, X. (2011). Aerodynamic response analysis of wind turbines. Journal of Mechanical Science and Technology, 25(1), 89–95. https://doi.org/10.1007/s12206-010-0909-z
Li, W., Xiong, Y., Su, G., Ye, Z., Wang, G., & Chen, Z. (2023). The aerodynamic performance of horizontal axis wind turbines under rotation condition. Sustainability, 15(16), 12553. https://doi.org/10.3390/su151612553
Liu, W., Ma, Y., Wang, N., Luo, Y., & Tang, A. (2022). A design of composite spar/shear web with ZPR honeycombs and graded structures for wind turbine blades. Mechanics of Advanced Materials and Structures, 29(25), 3633–3645. https://doi.org/10.1080/15376494.2021.1907004
Resor, B. (2013). Definition of a 5MW/61.5m wind turbine blade reference model. (Nos. SAND2013-2569, 1095962, 463454; pp. SAND2013-2569, 1095962, 463454). https://doi.org/10.2172/1095962
Shehata, A. S., Barakat, A., Mito, M. T., Aboelsaoud, M., & Khairy, Y. (2024). Wind turbine tip deflection control using bio-inspired tubercle leading edges: Analysis of potential designs. Journal of Wind Engineering and Industrial Aerodynamics, 245, 105652. https://doi.org/10.1016/j.jweia.2024.105652
Torregrosa, A. J., Gil, A., Quintero, P., & Cremades, A. (2022). On the effects of orthotropic materials in flutter protection of wind turbine flexible blades. Journal of Wind Engineering and Industrial Aerodynamics, 227, 105055. https://doi.org/10.1016/j.jweia.2022.105055
Verma, S., Paul, A. R., & Jain, A. (2022). Performance investigation and energy production of a novel horizontal axis wind turbine with winglet. International Journal of Energy Research, 46(4), 4947–4964. https://doi.org/10.1002/er.7488
Wang, B., Li, Y., Gao, S., Shen, K., Zhao, S., Yao, Y., Zhou, Z., Hu, Z., & Zheng, X. (2023). Stability analysis of wind turbine blades based on different structural models. Journal of Marine Science and Engineering, 11(6), 1106. https://doi.org/10.3390/jmse11061106
Wang, L., Quant, R., & Kolios, A. (2016). Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. Journal of Wind Engineering and Industrial Aerodynamics, 158, 11–25. https://doi.org/10.1016/j.jweia.2016.09.006
Wang, X., & Song, B. (2022). Application of bionic design inspired by bamboo structures in collapse resistance of thin-walled cylindrical shell steel tower. Thin-Walled Structures, 171, 108666. https://doi.org/10.1016/j.tws.2021.108666
Yassen, Y. El. S., Abdelhameed, A. S., & Elshorbagy, K. A. (2023). An examination of hub wind turbine utilizing fluid-structure interaction strategy. Alexandria Engineering Journal, 64, 1–11. https://doi.org/10.1016/j.aej.2022.08.042
Zhang, D., Liu, Z., Li, W., Zhang, J., Cheng, L., & Hu, G. (2024). Fluid-structure interaction analysis of wind turbine aerodynamic loads and aeroelastic responses considering blade and tower flexibility. Engineering Structures, 301, 117289. https://doi.org/10.1016/j.engstruct.2023.117289
Zhang, Y., Song, Y., Shen, C., & Chen, N. Z. (2023). Aerodynamic and structural analysis for blades of a 15MW floating offshore wind turbine. Ocean Engineering, 287, 115785. https://doi.org/10.1016/j.oceaneng.2023.115785
Zhao, P., Chen, K., Feng, W., Gui, H., Gao, R., & Li, Y. (2024). Flutter Characteristics of Wind Turbine Blades with V-Stripe Web. Journal of Vibration Engineering & Technologies, 12(2), 2485–2497. https://doi.org/10.1007/s42417-023-00992-8
Zheng, T., Zhao, C., & He, J. (2023). Research on fatigue performance of offshore wind turbine blade with basalt fiber bionic plate. Structures, 47, 466–481. https://doi.org/10.1016/j.istruc.2022.11.082
Zheng, X., Yao, Y., Hu, Z., Yu, Z., & Hu, S. (2022). Influence of turbulence intensity on the aerodynamic performance of wind turbines based on the fluid-structure coupling method. Applied Sciences, 13(1), 250. https://doi.org/10.3390/app13010250