Choi, D. K., An, H. J., Lee, S. Y., & Bae, J. S. (2022). Fluid–Structure Interaction Analysis of a Fabric Skin for Fabric-Covered Wind Turbine Blades.
International Journal of Aeronautical and Space Sciences,
23(1), 92–101.
https://doi.org/10.1007/s42405-021-00419-2
Deng, Z., Xiao, Q., Huang, Y., Yang, L., & Liu, Y. (2024). A general FSI framework for an effective stress analysis on composite wind turbine blades.
Ocean Engineering,
291, 116412.
https://doi.org/10.1016/j.oceaneng.2023.116412
Ertorun, E. M., Yayla, M., Isik, D., & Cadirci, S. (2024). One-way fluid–structure interaction modeling and multi-objective optimization of horizontal-axis wind turbine blades equipped with winglets.
International Journal of Green Energy, 1–17.
https://doi.org/10.1080/15435075.2024.2430432
Garcia-Ribeiro, D., Malatesta, V., Moura, R. C., & Cerón-Muñoz, H. D. (2023). Assessment of RANS-type turbulence models for CFD simulations of horizontal axis wind turbines at moderate Reynolds numbers.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
45(11), 566.
https://doi.org/10.1007/s40430-023-04488-0
Giahi, M. H., & Jafarian Dehkordi, A. (2016). Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation.
Renewable Energy,
97, 162–168.
https://doi.org/10.1016/j.renene.2016.05.059
Han, S., He, Y., Ye, H., Ren, X., Chen, F., Liu, K., Shi, S. Q., & Wang, G. (2024). Mechanical behavior of bamboo, and its biomimetic composites and structural members: A systematic review.
Journal of Bionic Engineering,
21(1), 56–73.
https://doi.org/10.1007/s42235-023-00430-1
Herrera, C., Correa, M., Villada, V., Vanegas, J. D., García, J. G., Nieto-Londoño, C., & Sierra-Pérez, J. (2019). Structural design and manufacturing process of a low scale bio-inspired wind turbine blades.
Composite Structures, 208, 1–12.
https://doi.org/10.1016/j.compstruct.2018.08.061
Huang, S., Qiu, H., & Wang, Y. (2022). Aerodynamic performance of horizontal axis wind turbine with application of dolphin head-shape and lever movement of skeleton bionic airfoils.
Energy Conversion and Management,
267, 115803.
https://doi.org/10.1016/j.enconman.2022.115803
Huque, Z., Zemmouri, F., Lu, H., & Kommalapati, R. R. (2024). Fluid–Structure interaction simulations of wind turbine blades with pointed tips.
Energies,
17(5), 1090.
https://doi.org/10.3390/en17051090
Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009).
Definition of a 5-MW Reference Wind Turbine for Offshore System Development (No. NREL/TP-500-38060, 947422; p. NREL/TP-500-38060, 947422).
https://doi.org/10.2172/947422
Keprate, A., Bagalkot, N., Siddiqui, M. S., & Sen, S. (2023). Reliability analysis of 15MW horizontal axis wind turbine rotor blades using fluid-structure interaction simulation and adaptive kriging model.
Ocean Engineering,
288, 116138.
https://doi.org/10.1016/j.oceaneng.2023.116138
Li, W., Xiong, Y., Su, G., Ye, Z., Wang, G., & Chen, Z. (2023). The aerodynamic performance of horizontal axis wind turbines under rotation condition.
Sustainability,
15(16), 12553.
https://doi.org/10.3390/su151612553
Liu, W., Ma, Y., Wang, N., Luo, Y., & Tang, A. (2022). A design of composite spar/shear web with ZPR honeycombs and graded structures for wind turbine blades.
Mechanics of Advanced Materials and Structures,
29(25), 3633–3645.
https://doi.org/10.1080/15376494.2021.1907004
Resor, B. (2013).
Definition of a 5MW/61.5m wind turbine blade reference model. (Nos. SAND2013-2569, 1095962, 463454; pp. SAND2013-2569, 1095962, 463454).
https://doi.org/10.2172/1095962
Shehata, A. S., Barakat, A., Mito, M. T., Aboelsaoud, M., & Khairy, Y. (2024). Wind turbine tip deflection control using bio-inspired tubercle leading edges: Analysis of potential designs.
Journal of Wind Engineering and Industrial Aerodynamics,
245, 105652.
https://doi.org/10.1016/j.jweia.2024.105652
Torregrosa, A. J., Gil, A., Quintero, P., & Cremades, A. (2022). On the effects of orthotropic materials in flutter protection of wind turbine flexible blades.
Journal of Wind Engineering and Industrial Aerodynamics,
227, 105055.
https://doi.org/10.1016/j.jweia.2022.105055
Verma, S., Paul, A. R., & Jain, A. (2022). Performance investigation and energy production of a novel horizontal axis wind turbine with winglet.
International Journal of Energy Research,
46(4), 4947–4964.
https://doi.org/10.1002/er.7488
Wang, B., Li, Y., Gao, S., Shen, K., Zhao, S., Yao, Y., Zhou, Z., Hu, Z., & Zheng, X. (2023). Stability analysis of wind turbine blades based on different structural models.
Journal of Marine Science and Engineering,
11(6), 1106.
https://doi.org/10.3390/jmse11061106
Wang, L., Quant, R., & Kolios, A. (2016). Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA.
Journal of Wind Engineering and Industrial Aerodynamics,
158, 11–25.
https://doi.org/10.1016/j.jweia.2016.09.006
Wang, X., & Song, B. (2022). Application of bionic design inspired by bamboo structures in collapse resistance of thin-walled cylindrical shell steel tower.
Thin-Walled Structures,
171, 108666.
https://doi.org/10.1016/j.tws.2021.108666
Yassen, Y. El. S., Abdelhameed, A. S., & Elshorbagy, K. A. (2023). An examination of hub wind turbine utilizing fluid-structure interaction strategy.
Alexandria Engineering Journal,
64, 1–11.
https://doi.org/10.1016/j.aej.2022.08.042
Zhang, D., Liu, Z., Li, W., Zhang, J., Cheng, L., & Hu, G. (2024). Fluid-structure interaction analysis of wind turbine aerodynamic loads and aeroelastic responses considering blade and tower flexibility.
Engineering Structures,
301, 117289.
https://doi.org/10.1016/j.engstruct.2023.117289
Zhao, P., Chen, K., Feng, W., Gui, H., Gao, R., & Li, Y. (2024). Flutter Characteristics of Wind Turbine Blades with V-Stripe Web.
Journal of Vibration Engineering & Technologies,
12(2), 2485–2497.
https://doi.org/10.1007/s42417-023-00992-8
Zheng, X., Yao, Y., Hu, Z., Yu, Z., & Hu, S. (2022). Influence of turbulence intensity on the aerodynamic performance of wind turbines based on the fluid-structure coupling method.
Applied Sciences,
13(1), 250.
https://doi.org/10.3390/app13010250