Aguiar, J., Birch, D. M., & Pelacci, M. (2018). Wake vortex mechanisms behind semi-porous cylinders. Proceedings of the 2018 Applied Aerodynamics Conference.
ANSYS Inc. (2018). ANSYS help 19.0: Fluent theory guide. Pennsylvania: ANSYS Inc.
Bear, J. (1972). Dynamics of fluids in porous media. New York, NY: Dover Publications.
Bejan, A. (1995). Convection in porous media. Convection Heat Transfer,1-623.
Du, H., Zhang, Q., He, L., et al. (2022). Study on the characteristics and mechanism of cylindrical drag reduction in covered porous media.
Journal of Nanjing University of Aeronautics and Astronautics,
54(4), 611-622.
https://doi.org/10.16356/j.1005-2615.2022.04.008.
Ergun, S, & Orning, A. A. (1949). Fluid flow through randomly packed columns and fluidized beds.
Industrial and Engineering Chemistry, 41(6),1179-1184.
https://doi.org/10.1021/ie50474a011
Feng, H., Liu, Y., Wei, Z. Yi (2020). Numerical study of the effect of porous media on the wing-wound boundary layer. Journal of Applied Mechanics, 37(03), 1160-1165+1397.
Hu, Z., Liu, H., Chen, N., & Hu, J. W. (2020). Vortex shedding noise and flow mode analysis of cylinder with full/partial porous coating.
Aerospace Science and Technology,
106, 106154.
https://doi.org/10.1016/j.ast.2020.106154.
Igarashi, T. (1982). Flow characteristics around a circular cylinder with a slit: 2nd report, effect of boundary layer suction. Bulletin of JSME, 25(207), 1389-97.
Klausmann, K., & Ruck, B. (2017). Drag reduction of circular cylinders by porous coating on the leeward side,
Journal of Fluid Mechanics,
813, 382–411.
https://doi.org/10.1017/jfm.2016.757
Kral, L. D. (2000). Active flow control technology. ASME Fluids Engineering Technical Brief, 1-28.
Langtry, R. (2011). A correlation-based transition model using local variables for unstructured parallelized CFD codes.
Li, C. L. (2003). Relationship between rock compression coefficient and porosity. China Offshore Oil and Gas Geology, (05), 65-8.
Minale, M. (2014b). Momentum transfer in porous media. Journal of Fluid Mechanics, 745, 601–639.
Naito, H., & Fukagata, K. (2012). Numerical simulation of flow around a circular cylinder having porous surface.
Physics of Fluids, 24(11).
https://doi.org/10.1063/1.4767534
Nield, D. A., & Bejan, A. (2006). Convection in porous media (3rd ed.). New York, NY: Springer.
Peng, B., Miau, J., Bao, F., L. D. Weng, C. C. Chao, C. C. Hsu (2012). Performance of vortex shedding from a circular cylinder with a slit normal to the stream.
Flow Measurement and Instrumentation,
25, 54-62.
https://doi.org/10.1016/j.flowmeasinst.2011.07.003
Roshko, A. (1954). On the development of turbulent wakes from vortex streets. Report 1191, By Anatol Roshko.
Ruck, B., Klausmann, K., & Wacker, T. (2012). The flow around circular cylinders partially coated with porous media. AIP Conference Proceedings
1453(1), 49–54.
https://doi.org/10.1063/1.4711152
Smith, A. M. O. (1975). High-lift aerodynamics. Annual Review of Fluid Mechanics, 7(1), 179-218.
Wei, Z., Yang, Z., Xia, C., et al. (2016). Experimental study of the wake of a cylinder covered with porous media. Proceedings of the Chinese Society of Astronautics; Chinese Society of Aerodynamics.
Whitaker, S. (1996). The forchheimer equation: A theoretical development. Transport in Porous Media, 25(1), 27–50. https://doi.org/
Zamponi, R., Satcunanathan, S., Moreau, S., Ragni, D., & Meinke, M. (2020). On the role of turbulence distortion on leading-edge noise reduction by means of porosity.
Journal of Sound and Vibration, 485, 115561.
https://doi.org/10.1016/j.jsv.2020.115561.
Zikang, Z., & Wang, Y. (2024). Numerical simulation study of the effect of porous media passive flow control on the propulsion performance of airfoils in kármán vortex streets,
Ocean Engineering,
311, Part 1, 118720.
https://doi.org/10.1016/j.oceaneng.2024.118720.
Zhou, Z., Huang, S., & Wang, Y. (2023). Numerical simulation study of the fluid-structure coupling effects of Kármán vortex street on airfoil motion with varying thickness.
Ocean Engineering,
286, 115459.
https://doi.org/10.1016/j.oceaneng.2023.115459.