Abed, A., & Afgan, I. (2017). A CFD study of flow quantities and heat transfer by changing a vertical to diameter ratio and horizontal to diameter ratio in inline tube banks using URANS turbulence models.
International Communications in Heat and Mass Transfer,
89, 18–30.
https://doi.org/10.1016/j.icheatmasstransfer.2017.09.015
Aiba, S., Tsuchida, H., & Ota, T. (1982). Heat transfer around tubes in staggered tube banks. Bulletin of JSME, 25(204), 927–933. https://doi.org/10.1299/JSME1958.25.927
Bacellar, D., Aute, V., Huang, Z., & Radermacher, R. (2016). Airside friction and heat transfer characteristics for staggered tube bundle in crossflow configuration with diameters from 0.5 mm to 2.0 mm. International Journal of Heat and Mass Transfer, 98, 448–454. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.072
Bejan, A. (1995). The optimal spacing for cylinders in crossflow forced convection. Journal of Heat Transfer, 117(3), 767–770. https://doi.org/10.1115/1.2822645
Bejan, A., Fowler, A. J., & Stanescu, G. (1995). The optimal spacing between horizontal cylinders in a fixed volume cooled by natural convection.
International Journal of Heat and Mass Transfer, 38(11), 2047–2055.
https://doi.org/10.1016/0017-9310(94)00312-J
Belegundu, A. D., & Chandrupatla, T. R. (2019). Optimization concepts and applications in engineering (3rd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108347976
Burden, F., & Winkler, D. (2008). Bayesian Regularization of Neural Networks. Methods in Molecular Biology, 458, 23–42. https://doi.org/10.1007/978-1-60327-101-1_3
Deng, Z., Wang, Z., Wang, Y., & Wan, L. (2024). Numerical simulation study on the resistance and heat transfer performance of anti-icing device of fin-staggered tube structure in marine intake system. Applied Thermal Engineering, 244, 122619. https://doi.org/10.1016/j.applthermaleng.2024.122619
Fang, Y., & Li, J. (2010). A Review of tournament selection in genetic programming. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6382, 181–192. https://doi.org/10.1007/978-3-642-16493-4_19
Fausett, L. V., (2006). Fundamentals of neural networks : architectures, algorithms, and applications. Pearson Education India.
Ge, Y., Lin, Y., Tao, S., He, Q., Chen, B., & Huang, S. M. (2021). Shape optimization for a tube bank based on the numerical simulation and multi-objective genetic algorithm. International Journal of Thermal Sciences, 161, 106787. https://doi.org/10.1016/J.IJTHERMALSCI.2020.106787
Geb, D., Zhou, F., DeMoulin, G., & Catton, I. (2013). Genetic algorithm optimization of a finned-tube heat exchanger modeled with volume-averaging theory. Journal of Heat Transfer, 135(8). https://doi.org/10.1115/1.4024091/374862
Gu, L., Min, J., Wu, X., & Yang, L. (2017). Airside heat transfer and pressure loss characteristics of bare and finned tube heat exchangers used for aero engine cooling considering variable air properties.
International Journal of Heat and Mass Transfer, 108, 1839–1849.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.047
Hoseinzadeh, S., Bahrami, A., Mirhosseini, S. M., Sohani, A., & Heyns, S. (2020). A detailed experimental airfoil performance investigation using an equipped wind tunnel.
Flow Measurement and Instrumentation,
72, 101717.
https://doi.org/10.1016/j.flowmeasinst.2020.101717
Karali, M. A., Almohammadi, B. A., Alshareef, R. S., Gad, A., Refaey, H. A., & Zied, K. (2025). Heat transfer enhancement and pressure drop from tube bank with splitter plates in cross flow employing RANS and LES turbulence models. Thermal Science, (00), 26-26. https://doi.org/10.2298/TSCI241209026K
Kariman, H., Hoseinzadeh, S., Khiadani, M., & Nazarieh, M. (2023). 3D-CFD analysing of tidal Hunter turbine to enhance the power coefficient by changing the stroke angle of blades and incorporation of winglets. Ocean Engineering, 287, 115713. https://doi.org/10.1016/j.oceaneng.2023.115713
Khan, W. A., Culham, J. R., & Yovanovich, M. M. (2007). Optimal design of tube banks in crossflow using entropy generation minimization method.
Journal of Thermophysics and Heat Transfer, 21(2), 372–378.
https://doi.org/10.2514/1.26824
Kim, T. (2013). Effect of longitudinal pitch on convective heat transfer in crossflow over in-line tube banks. Annals of Nuclear Energy, 57, 209–215. https://doi.org/10.1016/J.ANUCENE.2013.01.060
Li, X., Zhu, D., Yin, Y., Tu, A., & Liu, S. (2019). Parametric study on heat transfer and pressure drop of twisted oval tube bundle within line layout. International Journal of Heat and Mass Transfer, 135, 860–872. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.031
Mainardes, R. L. S., Matos, R. S., Vargas, J. V. C., & Ordonez, J. C. (2007). Optimally staggered finned circular and elliptic tubes in turbulent forced convection. Journal of Heat Transfer, 129(5), 674–678. https://doi.org/10.1115/1.2712860
Mainardes, R. L. S., Matos, R. S., Vargas, J. V. C., & Ordonez, J. C. (2013). Pumping power minimization in staggered finned circular and elliptic-tube heat exchangers in turbulent flow.
Experimental Heat Transfer,
26(4), 397–411.
https://doi.org/10.1080/08916152.2012.694011
Mashhadi, A., Sohankar, A., & Moradmand, M. M. (2024). Three-dimensional wake transition of rectangular cylinders and temporal prediction of flow patterns based on a machine learning algorithm. Physics of Fluids, 36(9). https://doi.org/10.1063/5.0225180
Matos, R. S., Vargas, J. V. C., Laursen, T. A., & Saboya, F. E. M. (2001). Optimization study and heat transfer comparison of staggered circular and elliptic tubes in forced convection. International Journal of Heat and Mass Transfer, 44(20), 3953–3961. https://doi.org/10.1016/S0017-9310(01)00006-0
Matos, R. S., Vargas, J. V. C., Laursen, T. A., & Bejan, A. (2004a). Optimally staggered finned circular and elliptic tubes in forced convection. International Journal of Heat and Mass Transfer, 47(6–7), 1347–1359. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2003.08.015
Matos, R. S., Laursen, T. A., Vargas, J. V. C., & Bejan, A. (2004b). Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection. International Journal of Thermal Sciences, 43(5), 477–487. https://doi.org/10.1016/J.IJTHERMALSCI.2003.10.003
Mohanty, R. L., Swain, A., & Das, M. K. (2018). Thermal performance of mixed tube bundle composed of circular and elliptical tubes. Thermal Science and Engineering Progress, 5, 492–505. https://doi.org/10.1016/j.tsep.2018.02.009.
Naik, H., & Tiwari, S. (2021a). Thermodynamic performance analysis of an inline fin-tube heat exchanger in presence of rectangular winglet pairs.
International Journal of Mechanical Sciences, 193, 106148.
https://doi.org/10.1016/j.ijmecsci.2020.106148
Naik, H., & Tiwari, S. (2021b). Thermal performance analysis of fin-tube heat exchanger with staggered tube arrangement in presence of rectangular winglet pairs.
International Journal of Thermal Sciences, 161.
https://doi.org/10.1016/j.ijthermalsci.2020.106723.
Nazarieh, M., Kariman, H., & Hoseinzadeh, S. (2023). Numerical simulation of fluid dynamic performance of turbulent flow over Hunter turbine with variable angle of blades. International Journal of Numerical Methods for Heat & Fluid Flow, 33(1), 153-173. https://doi.org/10.1108/HFF-12-2021-0774
Rawa, M. J. H., Al-Turki, Y. A., Abu-Hamdeh, N. H., & Alimoradi, A. (2021). Multi-objective optimization of heat transfer through the various types of tube banks arrangements. Alexandria Engineering Journal, 60(3), 2905–2919. https://doi.org/10.1016/J.AEJ.2021.01.017.
Sahamifar, S., Kowsary, F., & Mazlaghani, M. H. (2019). Generalized optimization of cross-flow staggered tube banks using a subscale model. International Communications in Heat and Mass Transfer, 105, 46–57. https://doi.org/10.1016/j.icheatmasstransfer.2019.03.004
Shah, K., Patel, P., Mahant, K., & Yadav, C. O. (2013). CFD analysis of heat exchanger over a staggered tube bank for different angle arrangement of tube bundles. International Journal of Engineering Research & Technology (IJERT), 2(1). https://www.ijert.org/research/cfd-analysis-of-heat-exchanger-over-a-staggered-tube-bank-for-different-angle-arrangement-of-tube-bundles-IJERTV2IS1445.pdf
Stanescu, G., Fowler, A. J., & Bejan, A. (1996). The optimal spacing of cylinders in free-stream cross-flow forced convection.
International Journal of Heat and Mass Transfer,
39(2), 311–317.
https://doi.org/10.1016/0017-9310(95)00122-P.
Wilson, A. S., & Bassiouny, M. K. (2000). Modeling of heat transfer for flow across tube banks. Chemical Engineering and Processing: Process Intensification, 39(1), 1–14. https://doi.org/10.1016/S0255-2701(99)00069-0
Žukauskas, A. (1972). Heat Transfer from Tubes in Crossflow. Advances in Heat Transfer, 8(C), 93–160. https://doi.org/10.1016/S0065-2717(08)70038-8.