Back-turn Approach for Optimal Operation of Booster Pump Systems

Document Type : Regular Article

Authors

1 Sego Industry Pump, Bongsu-daero, Seo-Gu, Incheon, Gyeonggi-do, 22845, South Korea

2 Department of Mechanical Engineering, Graduate School of Engineering, Gyeongsang National University, Jinju, Gyeongnam, 52725, South Korea

3 Department of Mechanical Engineering, International University of Business Agriculture and Technology, Uttara, Dhaka, 1230, Bangladesh

4 School of Aerospace Engineering, Gyeongsang National University, Jinju, Gyeongnam, 52725, South Korea

10.47176/jafm.18.9.3428

Abstract

Conventional pumping techniques frequently fail to optimize energy use in commercial and residential high-rise buildings. This study examines creative scheduling and operational techniques with an emphasis on back-turn operations that improve operational efficiency and save energy in booster pump systems. In addition, the study demonstrates significant energy use savings while preserving system efficiency by examining water consumption trends in high-rise residential and commercial buildings. Over 24 h of back-turn operations key findings showed power usage reductions of up to 5.05% in residential units and 5.84% in commercial buildings. With the use of sophisticated control systems and real-time data monitoring, the back-turn operating approach dynamically modifies pump sequences to optimize efficiency. In addition to saving energy, this method prolongs the pump’s life by avoiding ineffective high-flow operations. The findings highlight the significance of strategic pump management as an economical and sustainable solution for urban water delivery systems, particularly in rapidly developing areas. Altogether, this study emphasizes the necessity of flexible management strategies to address energy inefficiencies, supporting the long-term expansion of urban infrastructure.

Keywords

Main Subjects


Ansys Inc. (2013). ANSYS-CFX (CFX Introduction, CFX Reference Guide, CFX Tutorials, CFX-Pre User’s Guide, CFXSolver Manager User’s Guide, Theory Guide), release 14.5, USA.
Arun Shankar, V. K., Umashankar, S., Paramasivam, S., & Hanigovszki, N. (2016). A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system. Applied Energy, 181, 495–513. https://doi.org/10.1016/j.apenergy.2016.08.070
Barán, B., von Lücken, C., & Sotelo, A. (2005). Multi-objective pump scheduling optimisation using evolutionary strategies. Advances in Engineering Software, 36(1), 39–47. https://doi.org/10.1016/j.advengsoft.2004.03.012
Coelho, B., & Andrade-Campos, A. (2014). Efficiency achievement in water supply systems—A review. Renewable and Sustainable Energy Reviews, 30, 59–84. https://doi.org/10.1016/j.rser.2013.09.010
da Silveira, A. P. P., & Mata-Lima, H. (2021). Assessing energy efficiency in water utilities using long-term data analysis. Water Resources Management, 35(9), 2763–2779. https://doi.org/10.1007/s11269-021-02866-8
Derakhshan, S., & Nourbakhsh, A. (2008). Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation. Experimental Thermal and Fluid Science, 32(8), 1620–1627. https://doi.org/10.1016/j.expthermflusci.2008.05.004
Diaz, C., Ruiz, F., & Patino, D. (2017). Modeling and control of water booster pressure systems as flexible loads for demand response. Applied Energy, 204, 106–116. https://doi.org/10.1016/j.apenergy.2017.06.094
Fadaei Rodi, R., Kamali, H. A., & Pasandidehfard, M. (2024). Innovative optimization of parabolic cavitators: Improving hydrodynamic efficiency and supercavity qualitycavitatio. Physics of Fluids, 36(10). https://doi.org/10.1063/5.0231369
Fernández García, I., González Perea, R., Moreno, M. A., Montesinos, P., Camacho Poyato, E., & Rodríguez Díaz, J. A. (2017). Semi-arranged demand as an energy saving measure for pressurized irrigation networks. Agricultural Water Management, 193, 22–29. https://doi.org/10.1016/j.agwat.2017.07.025
Furman, W. B. (2020). Continuous Flow Analysis. Theory and Practice. CRC Press. https://doi.org/10.1201/9781003064992
Georgiadis, N. J., Yoder, D. A., & Engblom, W. A. (2006). Evaluation of modified two-equation turbulence models for jet flow predictions. AIAA Journal, 44(12), 3107–3114. https://doi.org/10.2514/1.22650
Groß, T. F., Pöttgen, P. F., & Pelz, P. F. (2017). Analytical approach for the optimal operation of pumps in booster systems. Journal of Water Resources Planning and Management, 143(8). https://doi.org/10.1061/(ASCE)WR.1943-5452.0000776
Heo, T. S., Choi, S. W., & Sang, J. H. (2016). Booster pump control method (Korean Patent No. KR101672129B1). Korean Intellectual Property Office. Issued November 4, 2016. https://patents.google.com/patent/KR101672129B1/en
Hossain, J., Kadir, A. F., Hanafi, A. N., Shareef, H., Khatib, T., Baharin, K. A., & Sulaima, M. F. (2023). A review on optimal energy management in commercial buildings. Energies, 16(4), 1609. https://doi.org/10.3390/en16041609
Khramshin, V., Karandaev, A., & Radionov, A. (2014). Energy Saving in the Hot Water Supply Systems of Buildings. Applied Mechanics and Materials, 698, 815–821. https://doi.org/10.4028/www.scientific.net/AMM.698.815
Koor, M., Vassiljev, A., & Koppel, T. (2016). Optimization of pump efficiencies with different pumps characteristics working in parallel mode. Advances in Engineering Software, 101, 69–76. https://doi.org/10.1016/j.advengsoft.2015.10.010
Li, X., Zhou, H., Wei, Z., & Zhu, Z. (2024). Interstage transmission and differential analysis of pressure fluctuations in multistage centrifugal pump-as-turbine. Physics of Fluids, 36(5). https://doi.org/10.1063/5.0201871
Luna, T., Ribau, J., Figueiredo, D., & Alves, R. (2019). Improving energy efficiency in water supply systems with pump scheduling optimization. Journal of Cleaner Production, 213, 342–356. https://doi.org/10.1016/j.jclepro.2018.12.190
Makaremi, Y., Haghighi, A., & Ghafouri, H. R. (2017). Optimization of pump scheduling program in water supply systems using a self-adaptive NSGA-II; a review of theory to real application. Water Resources Management, 31(4), 1283–1304. https://doi.org/10.1007/s11269-017-1577-x
Midiani, L. P. I., Irawan, I. M. D., Bangse, K., & Gunung, I. N. (2023). Design of clean water booster pump for high-rise buildings. LOGIC : Jurnal Rancang Bangun Dan Teknologi, 23(3), 203–211. https://doi.org/10.31940/logic.v23i3.203-211
Müller, T. M., Leise, P., Meck, T., Altherr, L. C., & Pelz, P. F. (2019). Systemic optimization of booster stations - from data collection to validation. 4th International Rotating Equipment Conference, Wiesbaden, Germany.
https://doi.org/10.26083/tuprints-00020901
Nguyen, D. A., Lee, H. J., Kim, S., Choi, B. L., Choi, D. H., Kim, G. S., Sun, S., & Kim, J. H. (2024). Multiobjective hydraulic optimization of the diffuser vane in an axial flow pump. Physics of Fluids, 36(7). https://doi.org/10.1063/5.0214940
Nikolenko, I. V., & Ryzhakov, A. N. (2020). Parallel operation mode optimization of different-type centrifugal pumps of a water supply booster pumping station. 2020 International Conference on Dynamics and Vibroacoustics of Machines (DVM), 1–6. https://doi.org/10.1109/DVM49764.2020.9243886
Nogueira Vilanova, M. R., & Perrella Balestieri, J. A. (2014). Energy and hydraulic efficiency in conventional water supply systems. Renewable and Sustainable Energy Reviews, 30, 701–714. https://doi.org/10.1016/j.rser.2013.11.024
Østergaard, P. A., & Andersen, A. N. (2016). Booster heat pumps and central heat pumps in district heating. Applied Energy, 184, 1374–1388. https://doi.org/10.1016/j.apenergy.2016.02.144
Pedersen, G. K. M., & Yang, Z. (2008). Efficiency optimization of a multi-pump booster system. Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, 1611–1618. https://doi.org/10.1145/1389095.1389400
Pinto, J. M., Joly, M., & Moro, L. F. L. (2000). Planning and scheduling models for refinery operations. Computers & Chemical Engineering, 24(9–10), 2259–2276. https://doi.org/10.1016/S0098-1354(00)00571-8
Rakibuzzaman, M., Kim, H. H., Kim, K. W., Suh, S. H., & Bae, Y. S. (2022). A study on booster pump system with flow sensor for individual flow control method. Journal of Applied Fluid Mechanics, 15(3), 889–900. https://doi.org/10.47176/JAFM.15.03.33153
Rakibuzzaman, M., Kim, H. H., Suh, S. H., Islam, M. D., & Zhou, L. (2024). Effects of cavitation and erosion on submersible drainage pumps: A numerical study. Physics of Fluids, 36(8). https://doi.org/10.1063/5.0223126
Weber, J. B., & Lorenz, U. (2017). Optimizing booster stations. Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1303–1310. https://doi.org/10.1145/3067695.3082482
Yang, Z., & Borsting, H. (2010). Optimal scheduling and control of a multi-pump boosting system. 2010 IEEE International Conference on Control Applications, 2071–2076. https://doi.org/10.1109/CCA.2010.5611177
Ye, S., Li, X., Zhu, Z., Li, L., & Lin, T. (2022). Numerical study of the energy flow characteristics of multi-stage pump as turbines. Processes, 10(12), 2488. https://doi.org/10.3390/pr10122488
Zhang, H., Xia, X., & Zhang, J. (2012). Optimal sizing and operation of pumping systems to achieve energy efficiency and load shifting. Electric Power Systems Research, 86, 41–50. https://doi.org/10.1016/j.epsr.2011.12.002